Can spatial patterns mitigate the urban heat island effect? Evidence from German metropolitan regions

Wenzheng Li, Ph.D. Candidate Stephan Schmidt, Associate Professor City and regional planning, Cornell University

Introduction

- UHI effect: the thermal anomaly of higher temperature in urban areas compared with less densely populated rural areas.
- Multiple dimensions: urban vs. rural; diurnal vs. nocturnal period; warm vs. cold seasons
- Adverse impacts: raising energy consumption; air pollution; serious risks to human health (Debbage and Shepherd, 2015, Stone, 2012; Zhou and Shepherd, 2010).
- Spatial planning policy to address increasing challenge caused by severe heatwaves in Western Europe

NATURE AND ENVIRONMENT | FRANCE

Heat wave scorches western Europe

07/13/2022

France and the Iberian peninsula are struggling to contain wildfires while the UK is bracing itself for temperatures to hit a record 40 degrees Celsius. Climate change has been cited as the cause for the intense heat.

🗄 🕬 World Africa Americas Asia Australia China Europe India Middle East United Kingdom

Germany's temperature record smashed as Europe's heat wave intensifies

By Ivana Kottasová, CNN Updated 1:01 PM EDT, Wed June 26, 2019

FORBES > BUSINESS BREAKING 20,000 Died Amid Punishing

20,000 Died Amid Punishir Heatwaves And Record Temperatures Across Western Europe This Summer, Data Indicates

The effects of urban spatial patterns on the UHI effect

- Traditional wisdom:
 - **Denser and compact** urban development -> greater UHI intensities.
 - mechanisms contributing to heat accumulation are amplified in denser urban areas (Couts et al., 2007; Debbage and Shepherd, 2015).
 - Sprawling, low-density and fragmented development -> exacerbate UHI intensities.
 - impervious surface coverage, energy consumption (Ewing and Rong, 2008; Shreevastava et al., 2019).
- A dilemma in regional and spatial planning policy:
 - Is high-density and compact growth a viable mitigation strategy or will it make cities less livable?

Polycentric spatial development (polycentrism)

- Reconciles this dilemma (dichotomy)?
 - Multiple centers, balanced structure, network of interconnections
 - integrate the benefits of both compact and dispersed development (Meijers and Burger, 2010)
 - "Decentralization": less concentrated around a single center
 - "Compactness": decentralized activities re-agglomerate outside urban core
 - Lower density in urban cores; high-density design; reduced energy consumption

Research objectives:

- By examining the UHI intensities of 50 metropolitan regions in Germany with various landscape/urban spatial structure metrics, this study aims to:
 - evaluate the degree to which traditional urban spatial patterns, including measures of land-use composition, fragmentation, and shape complexity, influence the UHI effect.
 - investigate the capacity of a polycentric spatial pattern, characterized by features of disaggregation and compactness, to mitigate urban heat.

Figure 1: the illustrations of urbanized and rural areas delineation (step 1) and the quantification of the urban heat island (UHI) effect (step 2).

- Area: 50 functional city-regions ٠
- Data: •
 - •

Spatial metrics for urban spatial patterns

Patch density (PD): 0.228 Percentage of like adjacencies (PLADJ): 91.117 Patch density (PD): 0.872 Percentage of like adjacencies (PLADJ): 83.86

Shape complexity:

Fragmentation

Hildesheim

Area-weighted mean shape index (AWMSI): 1.67

Heidelberg

Area-weighted mean shape index (AWMSI): 2.18

Mixed land use

Oldenburg

Contagion index: 38.22

Jena

Contagion index: 62.99

Polycentricity index:

Essen/Bochum/Dortmund/Hagen

Polycentricity index: 0.375

Polycentricity index: 0.892

Regression analysis (cross-sectional analysis)

$UHI_i = c + \beta_1 SPM_i + \mu \mathbf{Z}_i + \epsilon_i$

- SPM_i is one of the urban spatial pattern measures for region *i*.
- The vector Z_i contains a set of UHI control variables: population density, windspeed of summer season, and a drought index derived from temperature and precipitation.

Assumption: large regions reap greater benefits from polycentrism than smaller regions

 $UHI_i = c + \gamma_1 POLY_i \times PopSize_i + \delta Z_i + \epsilon_i$

- *PopSize*: a categorical variable, classifying regions into three equal-sized groups.
- γ1: captures the varying effects of polycentricity on the UHI effect, moderating by population size

For urban patches

PLADJ_urban: ↑ aggregation and contiguity → ↑ UHI

Table 3: regressions investi	gate the effects of landscape	metrics on the day- or	night-time urban heat island (UHI)
effects in 2012.			

Panel A: the effect of urban landscape metrics on the UHI effects								
		UHI (ln)	at Day		UHI (ln) at Night			
	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	4	5	6	7	8
PLADJ_Urban	.057***				.11***			
	(.009)				(.032)			
PD (ln)		286***				695***		
		(.063)				(.199)		
CONTAG (ln)			877***				774	
			(.303)				(.94)	
AWMSI (ln)				.225***				.483**
				(.079)				(.201)
Popdensity (ln)	068	063	.082	.12	.131	.003	.557	.478
• • • •	(.142)	(.14)	(.121)	(.139)	(.356)	(.294)	(.377)	(.335)
Windspeed (ln)	7***	705***	431***	662***	216	336	089	268
• • • •	(.118)	(.142)	(.131)	(.153)	(.232)	(.215)	(.253)	(.254)
Drought (ln)	095	147	178	164	072	225	247	296
0	(.093)	(.097)	(.119)	(.109)	(.223)	(.247)	(.221)	(.23)
Constant	-2.633***	2.152**	4.71***	.623	-2.861***	.338	2.38	121
	(.898)	(1.058)	(1.741)	(1.04)	(.788)	(.733)	(1.846)	(.779)
Observations	49	49	49	49	49	49	49	49
R-squared	.48	.472	.377	.371	.429	.372	.267	.35
	-			_				

Panel B: th	e effects of	greenspace	landscape r	netrics or	UHI	effects

	UHI (ln)) at Day	UHI (ln) at Night		
	Model 1	Model 2	Model 3	Model 4	
PLADJ Green	.024**		.061***		
-	(.009)		(.017)		
ROV (ln)		309***		611***	
		(.085)		(.185)	
Popdensity (ln)	.186	.229*	.571*	.717**	
	(.138)	(.118)	(.317)	(.298)	
Windspeed (ln)	638***	753***	298	267	
	(.153)	(.13)	(.241)	(.233)	
Drought (ln)	205*	151	379	188	
	(.105)	(.102)	(.238)	(.226)	
Constant	-1.275	096	-8.721***	-6.01**	
	(1.076)	(.929)	(2.66)	(2.362)	
Observations	49	49	49	49	
R-squared	.366	.451	.263	.303	

Robust standard errors are in parentheses; *** p < .01, ** p < .05, * p < .1(1) Observations removed due to the extremely low UHI (ln) values: the region of Siegen in daytime models, and the region of Ingolstadt in nighttime models.

For urban patches

- PLADJ_urban: ↑ aggregation and contiguity → ↑ UHI
- PD: ↑ fragmentation and patchiness → ↓UHI

Table 3: regressions investigate the effects of landscape metrics on the day- or night-time urban h	eat island (UHI)
effects in 2012.	

Denal As the offer	• • f · · · 1 · · · 1 · · ·	1		TT - 66 4-				
Panel A: the effec	Panel A: the effect of urban landscape metrics on the UHI effects							
		UHI (ln)	at Day			UHI (ln) at	Night	
	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	4	5	6	7	8
					a a shesheshe			
PLADJ_Urban	.057***				.11***			
	(.009)				(.032)			
PD (ln)		286***				695***		
		(.063)				(.199)		
CONTAG (In)			- 877***				- 774	
			(303)				(94)	
A TUR (CT (la)			(.505)	005***			(.24)	402**
AWMSI (III)				.225				.465
				(.079)				(.201)
Popdensity (ln)	068	063	.082	.12	.131	.003	.557	.478
	(.142)	(.14)	(.121)	(.139)	(.356)	(.294)	(.377)	(.335)
Windspeed (In)	- 7***	- 705***	- 431***	- 662***	- 216	- 336	- 089	- 268
	(118)	(142)	(131)	(153)	(232)	(215)	(253)	(254)
Descript (In)	(.110)	147	170	164	072	225	247	206
Drought (III)	095	147	1/8	104	072	225	247	290
	(.093)	(.097)	(.119)	(.109)	(.223)	(.247)	(.221)	(.23)
Constant	-2.633***	2.152** 🦷	4.71***	.623	-2.861***	.338	2.38	121
	(.898)	(1.058)	(1.741)	(1.04)	(.788)	(.733)	(1.846)	(.779)
Observations	49	49	49	49	49	49	49	49
R-squared	.48	.472	.377	.371	.429	.372	.267	.35
	·							

Panel H	3: the	effects (of greens	pace lands	cape met	rics on	UHI	effects
							_	

UHI (ln) at Night		
Model 3	Model 4	
.061***		
(.017)		
	611***	
	(.185)	
.571*	.717**	
(.317)	(.298)	
298	267	
(.241)	(.233)	
379	188	
(.238)	(.226)	
-8.721***	-6.01**	
(2.66)	(2.362)	
49	49	
.263	.303	
	<u>Model 3</u> .061*** (.017) .571* (.317) 298 (.241) 379 (.238) -8.721*** (2.66) 49 .263	

Robust standard errors are in parentheses; *** p < .01, ** p < .05, * p < .1(1) Observations removed due to the extremely low UHI (ln) values: the region of Siegen in daytime models, and the region of Ingolstadt in nighttime models.

For urban patches

- PLADJ_urban: ↑ aggregation and contiguity → ↑ UHI
- PD: ↑ fragmentation and patchiness → ↓UHI
- CONTAG: ↑ mixed landcover types → ↓UHI

Table 3: regressions investigate the effects of landscape metrics on the day- or night-time urban heat island (UHI)
effects in 2012.	

Denet As the offer	· · · · · · · · · · · · · · · · · · ·	1		TT - CC 4-				
Panel A: the effec	t of urban lan	dscape metri	cs on the UE	11 effects				
		UHI (ln)	at Day			UHI (ln) at	t Night	
	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	4	5	6	7	8
PLADJ_Urban	.057*** (.009)				.11***			
PD (ln)		286*** (.063)				695*** (.199)		
CONTAG (ln)			877*** (.303)				774 (.94)	
AWMSI (ln)				.225***				.483**
				(.079)				(.201)
Popdensity (ln)	068	063	.082	.12	.131	.003	.557	.478
	(.142)	(.14)	(.121)	(.139)	(.356)	(.294)	(.377)	(.335)
Windspeed (ln)	7***	705***	431***	662***	216	336	089	268
	(.118)	(.142)	(.131)	(.153)	(.232)	(.215)	(.253)	(.254)
Drought (ln)	095	147	178	164	072	225	247	296
	(.093)	(.097)	(.119)	(.109)	(.223)	(.247)	(.221)	(.23)
Constant	-2.633***	2.152**	4.71***	.623	-2.861***	.338	2.38	121
	(.898)	(1.058)	(1.741)	(1.04)	(.788)	(.733)	(1.846)	(.779)
Observations	49	49	49	49	49	49	49	49
R-squared	.48	.472	.377	.371	.429	.372	.267	.35

Panel B: the effects of greenspace landscape metrics on UHI effects

	UHI (ln)) at Day	UHI (ln) at Night		
	Model 1	Model 2	Model 3	Model 4	
PLADJ Green	.024**		.061***		
-	(.009)		(.017)		
ROV (ln)		309***		611***	
		(.085)		(.185)	
Popdensity (ln)	.186	.229*	.571*	.717**	
	(.138)	(.118)	(.317)	(.298)	
Windspeed (ln)	638***	753***	298	267	
	(.153)	(.13)	(.241)	(.233)	
Drought (ln)	205*	151	379	188	
	(.105)	(.102)	(.238)	(.226)	
Constant	-1.275	096	-8.721***	-6.01**	
	(1.076)	(.929)	(2.66)	(2.362)	
Observations	49	49	49	49	
R-squared	.366	.451	.263	.303	

Robust standard errors are in parentheses; *** p<.01, ** p<.05, * p<.1

For urban patches

- PLADJ_urban: ↑ aggregation and contiguity → ↑ UHI
- PD: ↑ fragmentation and patchiness → ↓UHI
- CONTAG: ↑ mixed landcover types → ↓UHI
- AWMSI: ↑ irregularity in the shape → ↑ UHI

Table 3: regressions investigate the effects of landscape metrics on the day- or night-time urban heat island (UHI)
effects in 2012.	

Panel A: the effec	t of urban lan	dscape metric	cs on the UH	II effects				
		UHI (ln)	at Dav					
	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	4	5	6	7	8
PLADJ_Urban	.057*** (.009)				.11*** (.032)			
PD (ln)		286*** (.063)				695*** (.199)		
CONTAG (ln)			877*** (.303)				774 (.94)	
AWMSI (ln)				.225***				.483**
				(.079)				(.201)
Popdensity (ln)	068	063	.082	.12	.131	.003	.557	.478
	(.142)	(.14)	(.121)	(.139)	(.356)	(.294)	(.377)	(.335)
Windspeed (ln)	7***	705***	431***	662***	216	336	089	268
	(.118)	(.142)	(.131)	(.153)	(.232)	(.215)	(.253)	(.254)
Drought (ln)	095	147	178	164	072	225	247	296
	(.093)	(.097)	(.119)	(.109)	(.223)	(.247)	(.221)	(.23)
Constant	-2.633***	2.152** 🧹	4.71***	.623	-2.861***	.338	2.38	121
	(.898)	(1.058)	(1.741)	(1.04)	(.788)	(.733)	(1.846)	(.779)
Observations	49	49	49	49	49	49	49	49
R-squared	.48	.472	.377	.371	.429	.372	.267	.35

Panel B: the effects of greenspace landscape metrics on UHI effects

	UHI (ln)) at Day	UHI (ln) a	at Night
	Model 1	Model 2	Model 3	Model 4
PLADJ Green	.024**		.061***	
-	(.009)		(.017)	
ROV (ln)		309***		611***
		(.085)		(.185)
Popdensity (ln)	.186	.229*	.571*	.717**
	(.138)	(.118)	(.317)	(.298)
Windspeed (ln)	638***	753***	298	267
	(.153)	(.13)	(.241)	(.233)
Drought (ln)	205*	151	379	188
	(.105)	(.102)	(.238)	(.226)
Constant	-1.275	096	-8.721***	-6.01**
	(1.076)	(.929)	(2.66)	(2.362)
Observations	49	49	49	49
R-squared	.366	.451	.263	.303

Robust standard errors are in parentheses; *** p<.01, ** p<.05, * p<.1

For urban patches

- PLADJ_urban: ↑ aggregation and contiguity → ↑ UHI
- PD: ↑ fragmentation and patchiness → ↓UHI
- CONTAG: ↑ mixed landcover types → ↓UHI
- AWMSI: ↑ irregularity in the shape → ↑ UHI

For green spaces

PLADJ_green: ↑ aggregation and contiguity → ↑ UHI

Table 3: regressions investigate the effects of landscape metrics on the day- or night-time urban heat island (UHI))
effects in 2012.	

circeto in 2012.								
Panel A: the effect	t of urban lan	dscape metri	cs on the UH	II effects				
		UHI (ln)	at Day					
	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	4	5	6	7	8
PLADJ Urban	.057***				.11***			
-	(.009)				(.032)			
PD (ln)		286***				695***		
		(.063)				(.199)		
CONTAG (ln)			877***				774	
			(.303)				(.94)	
AWMSI (ln)				.225***				.483**
				(.079)				(.201)
Popdensity (ln)	068	063	.082	.12	.131	.003	.557	.478
	(.142)	(.14)	(.121)	(.139)	(.356)	(.294)	(.377)	(.335)
Windspeed (ln)	7***	705***	431***	662***	216	336	089	268
	(.118)	(.142)	(.131)	(.153)	(.232)	(.215)	(.253)	(.254)
Drought (ln)	095	147	178	164	072	225	247	296
	(.093)	(.097)	(.119)	(.109)	(.223)	(.247)	(.221)	(.23)
Constant	-2.633***	2.152**	4.71***	.623	-2.861***	.338	2.38	121
	(.898)	(1.058)	(1.741)	(1.04)	(.788)	(.733)	(1.846)	(.779)
Observations	49	49	49	49	49	49	49	49
R-squared	.48	.472	.377	.371	.429	.372	.267	.35

Panel B: the effects of greenspace landscape metrics on UHI effects

	UHI (I	n) at Day	UHI (ln) a	at Night
	Model 1	Model 2	Model 3	Model 4
PLADJ_Green	.024**		.061***	
	(.009)		(.017)	
ROV (ln)		309***		611***
		(.085)		(.185)
Popdensity (ln)	.186	.229*	.571*	.717**
	(.138)	(.118)	(.317)	(.298)
Windspeed (ln)	638***	753***	298	267
	(.153)	(.13)	(.241)	(.233)
Drought (ln)	205*	151	379	188
	(.105)	(.102)	(.238)	(.226)
Constant	-1.275	096	-8.721***	-6.01**
	(1.076)	(.929)	(2.66)	(2.362)
Observations	49	49	49	49
R-squared	.366	.451	.263	.303
R-squared	.366	.451	.263	.303

Robust standard errors are in parentheses; *** p<.01, ** p<.05, * p<.1

For urban patches

- PLADJ_urban: ↑ aggregation and contiguity → ↑ UHI
- PD: ↑ fragmentation and patchiness → ↓UHI
- CONTAG: ↑ mixed landcover types → ↓UHI
- AWMSI: ↑ irregularity in the shape → ↑ UHI

For green spaces

- **PLADJ_green:** \uparrow aggregation and contiguity \rightarrow \uparrow **UHI**
- ROV: ↑ vegetated coverage → ↓UHI

Table 3: regressions investigate the effects of landscape metrics on the day- or night-time urban heat island (UHI))
effects in 2012.	

Panel A: the effec	t of urban lan	dscape metri	cs on the UF	II effects				
		UHI (ln)	at Day			t Night		
	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	4	5	6	7	8
PLADJ_Urban	.057***				.11***			
$DD(l_n)$	(.009)	2068***			(.052)	605***		
PD (III)		(.063)				(.199)		
CONTAG (ln)			877***				774	
			(.303)				(.94)	
AWMSI (ln)				.225***				.483**
				(.079)				(.201)
Popdensity (ln)	068	063	.082	.12	.131	.003	.557	.478
	(.142)	(.14)	(.121)	(.139)	(.356)	(.294)	(.377)	(.335)
Windspeed (ln)	7***	705***	431***	662***	216	336	089	268
	(.118)	(.142)	(.131)	(.153)	(.232)	(.215)	(.253)	(.254)
Drought (ln)	095	147	178	164	072	225	247	296
	(.093)	(.097)	(.119)	(.109)	(.223)	(.247)	(.221)	(.23)
Constant	-2.633***	2.152**	4.71***	.623	-2.861***	.338	2.38	121
	(.898)	(1.058)	(1.741)	(1.04)	(.788)	(.733)	(1.846)	(.779)
Observations	49	49	49	49	49	49	49	49
R-squared	.48	.472	.377	.371	.429	.372	.267	.35

Panel B: the effects of greenspace landscape metrics on UHI effects

	UHI (ln) at Day	UHI (ln) :	at Night
	Model 1	Model 2	Model 3	Model 4
PLADJ_Green	.024**		.061***	
	(.009)		(.017)	
ROV (ln)		309***		611***
		(.085)		(.185)
Popdensity (ln)	.186	.229*	.571*	.717**
	(.138)	(.118)	(.317)	(.298)
Windspeed (ln)	638***	753***	298	267
	(.153)	(.13)	(.241)	(.233)
Drought (ln)	205*	151	379	188
	(.105)	(.102)	(.238)	(.226)
Constant	-1.275	096	-8.721***	-6.01**
	(1.076)	(.929)	(2.66)	(2.362)
Observations	49	49	49	49
R-squared	.366	.451	.263	.303

Robust standard errors are in parentheses; *** p<.01, ** p<.05, * p<.1

- Polycentricism: ↑ polycentricity, ↓ UHI effect for large-sized regions.
- Mitigation effect:
 - most pronounced closer to the urban center(s);
 - gradually diminishes as the distance from CBDs.

Figure 3, Panel A: day- and night-time temperature gradients in large-, medium-, and small-sized regions estimated by local weighted regression.

- Three selected pairs of regions
- kernel density estimates
- Monocentric regions: higher peak values shifted towards the right
 - a greater proportion of high-temperature areas

Panel B: day- and night-time kernel density estimates (KDE) for three representative region pairs using Gaussian kernel. Red depicts monocentric regions and blue polycentric regions.

• Models 5 and 6: ↑ polycentricity, ↓ UHI

	$UHI(\ln) = T_{Core(mean)} - T_{R(mean)}$						
-	Model 5	Model 6	Model 7	Model 8			
-	Day	Day	Night	Night			
Poly (ln)	1027**	.0445	2568*	.2109			
	(.0411)	(.1044)	(.1357)	(.2728)			
Poly(ln)*Medium		1796		2952			
		(.1707)		(.4604)			
Poly(ln)*Large		1848*		5709			
		(.1086)		(.369)			
Medium Regions		0685		0708			
		(.1076)		(.2715)			
Large Regions		0747		.0628			
		(.0989)		(.2561)			
Popdensity (ln)	2233	2594	.1489	0968			
	(.1681)	(.1826)	(.3508)	(.3397)			
WindSpeed (ln)	6989***	6563***	2339	2311			
	(.1862)	(.1991)	(.2121)	(.2022)			
Drought (ln)	0482	052	0264	0035			
	(.1249)	(.1334)	(.2837)	(.2689)			
PLADJ_urban	.0313***	.0299**	.0567*	.031			
	(.0113)	(.0116)	(.0322)	(.0309)			
CONTAG (ln)	4311	4414	.5509	1.1082			
	(.3229)	(.3724)	(.7548)	(.7336)			
constant	2.579	3.0892	-8.320	-6.2968			
	(2.1476)	(2.357)	(5.455)	(5.1748)			
Observations	49	49	49	49			
R-squared	.3732	.4002	.2071	.4016			

- Models 5 and 6: ↑ polycentricity, ↓ UHI
- Model 6: interaction term
 - Polycentricism is more effective in mitigating UHI effect of larger regions

	$UHI(\ln) = T_{Core(mean)} - T_{R(mean)}$							
	Model 5	Model 6	Model 7	Model 8				
	Day	Day	Night	Night				
Poly (ln)	1027**	.0445	2568*	.2109				
	(.0411)	(.1044)	(.1357)	(.2728)				
Poly(ln)*Medium		1796		2952				
		(.1707)		(.4604)				
Poly(ln)*Large		1848*		5709				
		(.1086)		(.369)				
Medium Regions		0685		0708				
		(.1076)		(.2715)				
Large Regions		0747		.0628				
		(.0989)		(.2561)				
Popdensity (ln)	2233	2594	.1489	0968				
	(.1681)	(.1826)	(.3508)	(.3397)				
WindSpeed (ln)	6989***	6563***	2339	2311				
	(.1862)	(.1991)	(.2121)	(.2022)				
Drought (ln)	0482	052	0264	0035				
	(.1249)	(.1334)	(.2837)	(.2689)				
PLADJ_urban	.0313***	.0299**	.0567*	.031				
	(.0113)	(.0116)	(.0322)	(.0309)				
CONTAG (ln)	4311	4414	.5509	1.1082				
	(.3229)	(.3724)	(.7548)	(.7336)				
constant	2.579	3.0892	-8.320	-6.2968				
	(2.1476)	(2.357)	(5.455)	(5.1748)				
Observations	49	49	49	49				
R-squared	.3732	.4002	.2071	.4016				

Conclusion and policy implication

- Local land-use policy:
 - Facilitate more mixed land-use, more regularly-shaped urban spatial pattern
- Local greenspace planning:
 - Several small better than a single large
 - More dispersed distribution of greenspace: reduce urban aggregation, decrease the overall density of urban cores
- Regional scale planning:
 - Facilitate the development of polycentric urban regions (PURs)
 - particularly advantageous in cooling large-sized regions and CBD(s)
 - reduce density of urban core(s);
 - facilities disaggregated urban development;
 - curb excessive expansion of impervious surface.

Thank you!

Comments and Suggestions

Wenzheng Li, <u>wl563@cornell.edu</u> Stephan Schmidt, <u>sjs96@cornell.edu</u>

Two definitions of the UHI effect

- M1-4: $\Delta T = T_{extent} T_{rural}$
- M5-8: $\Delta T = T_{core} T_{rural}$

M1-4

- statistical significance in Model 1
- interaction terms insignificant

2012.										
	UHI(lı	$\mathbf{n}) = T_{LargeCor}$	$T_{e(mean)} - T_R$	(mean)	UHI	$UHI(\ln) = T_{Core(mean)} - T_{R(mean)}$				
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8		
	Day	Day	Night	Night	Day	Day	Night	Night		
Poly (ln)	0654*	0686	175	.0492	1027**	.0445	2568*	.2109		
• • •	(.0351)	(.094)	(.1419)	(.3174)	(.0411)	(.1044)	(.1357)	(.2728)		
Poly(ln)*Medium		.069		.0325		1796		2952		
• • •		(.1417)		(.521)		(.1707)		(.4604)		
Poly(ln)*Large		0122		3078		1848*		5709		
		(.1023)		(.3699)		(.1086)		(.369)		
Medium Regions		.0749		.0856		0685		0708		
		(.0987)		(.3072)		(.1076)		(.2715)		
Large Regions		008		.0248		0747		.0628		
		(.0917)		(.2899)		(.0989)		(.2561)		
Popdensity (ln)	1664	1597	.1049	0229	2233	2594	.1489	0968		
	(.1323)	(.1421)	(.3669)	(.3952)	(.1681)	(.1826)	(.3508)	(.3397)		
WindSpeed (ln)	6867***	6607***	2105	221	6989***	6563***	2339	2311		
	(.1289)	(.1543)	(.2218)	(.2353)	(.1862)	(.1991)	(.2121)	(.2022)		
Drought (ln)	1111	1194	0607	0566	0482	052	0264	0035		
	(.104)	(.1147)	(.2968)	(.3128)	(.1249)	(.1334)	(.2837)	(.2689)		
PLADJ_urban	.049***	.0505***	.1033***	.0903**	.0313***	.0299**	.0567*	.031		
	(.0086)	(.0082)	(.0337)	(.036)	(.0113)	(.0116)	(.0322)	(.0309)		
CONTAG (ln)	612*	6276*	276	.0679	4311	4414	.5509	1.1082		
	(.3098)	(.3623)	(.7895)	(.8535)	(.3229)	(.3724)	(.7548)	(.7336)		
constant	1.2647	1.1339	-9.012	-8.2142	2.579	3.0892	-8.320	-6.2968		
	(1.7476)	(1.9141)	(5.7056)	(6.0205)	(2.1476)	(2.357)	(5.455)	(5.1748)		
Observations	49	49	49	49	49	49	49	49		
R-squared	.537	.5455	.3362	.3801	.3732	.4002	.2071	.4016		

Robust standard errors are in parentheses; *** p<.01, ** p<.05, * p<.1

Table 4: regressions examine the impacts of polycentric development on the day- and night-time UHI effects in 2012.

Two definitions of the UHI effect

- M1-4: $\Delta T = T_{extent} T_{rural}$
- M5-8: $\Delta T = T_{core} T_{rural}$

M1-4

- statistical significance in Model 1
- interaction terms insignificant

M5-8

- M5, M6: significant
- UHI within the urban core(s) rather than the extended large core area.

2012.										
	UHI(lı	$\mathbf{n}) = T_{LargeCor}$	$r_{e(mean)} - T_R$	(mean)		$UHI(\ln) = T_{Core(mean)} - T_{R(mean)}$				
	Model 1	Model 2	Model 3	Model 4	-	Model 5	Model 6	Model 7	Model 8	
	Day	Day	Night	Night	-	Day	Day	Night	Night	
Poly (ln)	0654*	0686	175	.0492		1027**	.0445	2568*	.2109	
• • •	(.0351)	(.094)	(.1419)	(.3174)		(.0411)	(.1044)	(.1357)	(.2728)	
Poly(ln)*Medium		.069		.0325			1796	, ,	2952	
• • •		(.1417)		(.521)			(.1707)		(.4604)	
Poly(ln)*Large		0122		3078			1848*		5709	
		(.1023)		(.3699)			(.1086)		(.369)	
Medium Regions		.0749		.0856			0685		0708	
-		(.0987)		(.3072)			(.1076)		(.2715)	
Large Regions		008		.0248			0747		.0628	
		(.0917)		(.2899)			(.0989)		(.2561)	
Popdensity (ln)	1664	1597	.1049	0229		2233	2594	.1489	0968	
	(.1323)	(.1421)	(.3669)	(.3952)		(.1681)	(.1826)	(.3508)	(.3397)	
WindSpeed (ln)	6867***	6607***	2105	221		6989***	6563***	2339	2311	
	(.1289)	(.1543)	(.2218)	(.2353)		(.1862)	(.1991)	(.2121)	(.2022)	
Drought (ln)	1111	1194	0607	0566		0482	052	0264	0035	
	(.104)	(.1147)	(.2968)	(.3128)		(.1249)	(.1334)	(.2837)	(.2689)	
PLADJ_urban	.049***	.0505***	.1033***	.0903**		.0313***	.0299**	.0567*	.031	
	(.0086)	(.0082)	(.0337)	(.036)		(.0113)	(.0116)	(.0322)	(.0309)	
CONTAG (ln)	612*	6276*	276	.0679		4311	4414	.5509	1.1082	
	(.3098)	(.3623)	(.7895)	(.8535)		(.3229)	(.3724)	(.7548)	(.7336)	
constant	1.2647	1.1339	-9.012	-8.2142		2.579	3.0892	-8.320	-6.2968	
	(1.7476)	(1.9141)	(5.7056)	(6.0205)		(2.1476)	(2.357)	(5.455)	(5.1748)	
Observations	49	49	49	49		49	49	49	49	
R-squared	.537	.5455	.3362	.3801		.3732	.4002	.2071	.4016	

Table 4: regressions examine the impacts of polycentric development on the day- and night-time UHI effects in 2012.

Robust standard errors are in parentheses; *** p < .01, ** p < .05, * p < .1

2012.

Two definitions of the UHI effect

- M1-4: $\Delta T = T_{extent} T_{rural}$ •
- M5-8: $\Delta T = T_{core} T_{rural}$ ٠

M1-4

- statistical significance in Model 1 ٠
- interaction terms insignificant ٠

M5-8

- M5, M6: significant ٠
- \downarrow **UHI** within the urban core(s) • rather than the extended large core area.
- M7: interaction term significant ٠
- Polycentricism is more effective ٠ in mitigating UHI effect of larger regions

.012.									
	$UHI(\ln) = T_{LargeCore(mean)} - T_{R(mean)}$				$UHI(\ln) = T_{Core(mean)} - T_{R(mean)}$				
	Model 1 Day	Model 2 Day	Model 3 Night	Model 4 Night		Model 5 Day	Model 6 Day	Model 7 Night	Model 8 Night
Poly (ln)	0654* (.0351)	0686 (.094)	175	.0492		1027** (.0411)	.0445	2568* (.1357)	.2109
Poly(ln)*Medium	()	.069 (.1417)	()	.0325		()	1796 (.1707)	(2952 (.4604)
Poly(ln)*Large		0122 (.1023)		3078 (.3699)			1848* (.1086)		5709 (.369)
Medium Regions		.0749 (.0987)		.0856 (.3072)			0685 (.1076)		0708
Large Regions		008 (.0917)		.0248 (.2899)			0747 (.0989)		.0628 (.2561)
Popdensity (ln)	1664 (.1323)	1597 (.1421)	.1049 (.3669)	0229 (.3952)		2233 (.1681)	2594 (.1826)	.1489 (.3508)	0968 (.3397)
WindSpeed (ln)	6867*** (.1289)	6607*** (.1543)	2105 (.2218)	221 (.2353)	-	.6989*** (.1862)	6563*** (.1991)	2339 (.2121)	2311 (.2022)
Drought (ln)	1111 (.104)	1194 (.1147)	0607 (.2968)	0566 (.3128)		0482 (.1249)	052 (.1334)	0264 (.2837)	0035 (.2689)
PLADJ_urban	.049*** (.0086)	.0505*** (.0082)	.1033*** (.0337)	.0903** (.036)		.0313*** (.0113)	.0299** (.0116)	.0567* (.0322)	.031 (.0309)
CONTAG (ln)	612* (.3098)	6276* (.3623)	276 (.7895)	.0679 (.8535)		4311 (.3229)	4414 (.3724)	.5509 (.7548)	1.1082 (.7336)
constant	1.2647 (1.7476)	1.1339 (1.9141)	-9.012 (5.7056)	-8.2142 (6.0205)		2.579 (2.1476)	3.0892 (2.357)	-8.320 (5.455)	-6.2968 (5.1748)
Observations	49	49	49	49		49	49	49	49
R-squared	.537	.5455	.3362	.3801		.3732	.4002	.2071	.4016

Table 4: regressions examine the impacts of polycentric development on the day- and night-time UHI effects in

Robust standard errors are in parentheses; *** p < .01, ** p < .05, * p < .1

Land surface temperature (LST)

Mean land surface temperature (LST) in June, July, August :

- MYD11A2.061 Aqua Land Surface Temperature and Emissivity 8-Day Global 1km.
- Available at 1:30 PM (day) and 1:30AM (night)

raore 2. Desemptive	Statisties and a			2 IOI alle Jear 2	U (11 12).
Variables	Mean	Std. Dev.	Median	Min	Max
Dependent variables					
UHI_day	3.995	.868	4.076	2.013	5.885
UHI_night	.929	.388	0.878	.176	1.668
Variables of interest					
PLADJ_urban	87.566	2.165	87.568	82.022	91.983
PD	.43	.192	0.365	.177	.958
CONTAG	53.362	5.299	52.388	44.904	63.99
AWMSI	5.198	2.055	4.478	2.635	11.002
PLADJ_Green	76.88	3.193	77.194	70.142	82.143
ROV	.53	.157	0.528	.156	.8
POLY	.617	.299	0.553	.218	1.597
Control variables					
Popdensity	2969.675	669.403	2738.377	1817.403	4567.669
Windspeed_day	1.438	.256	1.466	1.051	2.24
Windspeed_night	.745	.226	0.725	.335	1.317
Drought index	8.396	1.771	8.000	5	14

1 able 2: Descriptive statistics and data sources of variables collected for the year 20
--

Data sources:

1. The MODIS LST product to measure the UHI effect: https://lpdaac.usgs.gov/products/myd11a2v061/.

2. Land-use dataset to generate landscape metrics: https://land.copernicus.eu/pan-european/corine-land-cover

3. Municipality population to quantify polycentricity index (POLY): INKAR (https://www.inkar.de/)

4. ERA5 monthly averaged data for day- and night-time windspeed in summer (June, July, and August):

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=fo

5. Drought index in summer: Deutscher Wetterdienst,

https://opendata.dwd.de/climate_environment/CDC/grids_germany/

The influence of landscape metrics on the UHI effect

Figure 2: scatterplots and fitted lines presenting the relationships between urban heat island (UHI) effects and landscape metrics.

Appendix

Table 5: Robustness check—regressions investigating the effects of landscape metrics and polycentric development on the day- or night-time UHI effects in 2006.

Panel A: regressions investigate the effects of landscape metrics on the UHI effects						
	Models of urban l	landscape metrics		Models of Greenspace metrics		
	UHI (ln) Day	UHI (ln) Night		UHI (ln) Day	UHI (ln) Night	
PLADJ_Urban	.044***	.13***	PLADJ_Green	.001	.021	
	(.01)	(.032)		(.005)	(.019)	
PD (ln)	15***	494***	ROV (ln)	094*	389***	
	(.042)	(.114)		(.053)	(.142)	
CONTAG (ln)	442*	393				
	(.254)	(.752)				
AWMSI (ln)	.188***	.61***				
	(.066)	(.169)				

(1) Observations removed due to the extremely low UHI (ln) values: Siegen in daytime models; Siegen and Erfurt in nighttime models. (2) All models include the same control variables as the 2012 models.

Panel B: regressions investigate the effects of polycentric development on the UHI effects.				
	Model 1	Model 2	Model 3	Model 4
_	UHI (ln) Day	UHI (ln) Day	UHI (ln) Night	UHI (ln) Night
Poly (ln)	0745**	.0749	1707**	.2177
	(.0327)	(.0708)	(.0773)	(.2539)
Poly (ln)*Medium		3		5027
		(.2164)		(.4351)
Poly (ln)*Large		177**		4751*
		(.0834)		(.2632)
Control Variables	Yes	Yes	Yes	Yes
Observations	50	50	48	48
R-squared	.2565	.3115	.306	.3994

(1) Observations removed due to the extremely low UHI (ln) values: Siegen and Erfurt in nighttime models Robust standard errors are in parentheses; *** p < .01, ** p < .05, * p < .1

Polycentric spatial development and policy

- European planning institutions began to promote regional polycentrism in the early 2000s to compete with global cities in North America and Asia (Faludi, 2005).
- The 1999 European Spatial Development Perspective (ESDP):
 - guidance for "sectoral policies with significant spatial impacts"
 - linked polycentric urban forms, economic competitiveness, and deconcentrating economic growth (Commission of the European Communities, 1999: 11).
- A wave of Euro-centric research on polycentricity followed,
 - the connection between polycentric urban form and desirable social, environmental, and economic outcomes (see, among many others, Aguilera, 2005; Kloosterman and Lambregts, 2001; Lambregts, 2009; Meijers and Sandberg, 2006; Meijers 2008; Hall and Pain 2006).

Spatial (landscape) metrics for urban spatial patterns

Metric	Equation and definition	
Percentage of like adjacencies (PLADJ)	$PLADJ_i = \frac{g_{ii}}{\sum_{k=1}^m g_{ik}} * 100$	g_{ii} = number of adjacent pairs of pixels in land-use class i. g_{ik} = number of adjacent pairs of pixels between land-use class i and k. m = number of land-use classes in the landscape.
Patch density (PD)	$PD_i = \frac{n_i}{a_i} * 10000 * 100$	$n_i =$ number of patches in class i . $a_i =$ total area of class i .
Contagion index (CONTAG)	$CONTAG = \{1 + \frac{1}{2ln(m)} \left[\left(\sum_{i=1}^{m} \right)^{m} \right] $	$\sum_{i=1}^{m} p_{i} \frac{g_{ii}}{\sum_{k=1}^{m} g_{ik}} - ln p_{i} \frac{g_{ii}}{\sum_{k=1}^{m} g_{ik}}] \} * 100$
	g A	k_{ik} = number of adjacent pairs of pixels between class i and k . All pairs of pixels in the adjacency matrix are double counted.
Area-weighted mean shape index (AWMSI)	$AWMSI_i = \sum_{j=1}^{n} \left[\left(\frac{0.25p_{ij}}{\sqrt{a_{ij}}} \right) \left(\frac{1}{\sum_{j=1}^{n}} \right) \left(\frac{1}{\sum_{j=1}^{n}}$	$\begin{array}{ll} a_{ij} & P_{ij} = \text{perimeter of patch } j \text{ in class } i. \\ a_{ij} = \text{area of patch } ij. \\ n = \text{total number of patches in class } i. \end{array}$
Ratio of vegetated area (ROV)	$ROG = \frac{a_g}{A}$	a_g = total area of vegetated spaces within a metropolitan area, including urban greenspace, rural shrub, and forest.
Polycentricity index (POLY)	Step 1: $P_i(n) = 1 - \frac{\sigma_n}{\sigma_{max}}$, $(n = 2,3,4)$ Step 1: $P_i(n)$ = degree of polycer standard deviation of population deviation of population of an abs with zero population and another Step 2: $POLY_i$ = the average degr	Step2: $POLY_{i} = \frac{P_{i}(2) + P_{i}(3) + P_{i}(4)}{3}$ ntricity for region <i>i</i> incorporating the top n centers. $\sigma_{n} =$ for the top n centers. $\sigma_{max} =$ the maximum standard solute monocentric two-center scenario, namely one center with the maximum population in the region. ree of polycentricity considering $P_{i}(2)$, $P_{i}(3)$, and $P_{i}(4)$.

Table 1: The equation and definition of landscape metrics and polycentricity index