# Can polycentric urban development simultaneously achieve both economic growth and regional equity? A multi-scale analysis of German regions

Wenzheng Li<sup>1</sup>, Schmidt Stephan<sup>1</sup>, Stefan Siedentop<sup>2</sup>
City and Regional Planning, Cornell University
Faculty of Spatial Planning, TU Dortmund University

# Introduction

#### Scholarly debates on polycentric urban regions:

- have moved beyond methodological discussions of operationalization and measurement
- to explaining urban spatial structure and discussing the outcomes of spatial patterns.

#### **Empirical studies**

- European Spatial Development Perspective (1999): more competitive and balanced territorial development.
  - Economic productivity, regional disparities, accessibility to urban amenities (functions), air quality (Ouwehand, 2022; Meijers and Sandberg, 2008; Sun et al., 2017; Han et al., 2018)
  - Multiple countries—the United States, China, OECD (Brezzi and Veneri, 2015), Spain (Garcia-Lopez and Muñiz, 2010), Italy (Veneri, 2010)

# **Research Objective**

Polycentricity as an integral policy tool to realize *economic competitiveness* and *social cohesion* (ESDP, 1999; BMVBS, 2006; EU Ministers, 2020)

- Gap 1: a lack of empirical evidence linking multiple goals of PUR.
  - these goals are often interpreted as incompatible (Davoudi, 2003; Burgalassi, 2012)
- Gap 2: the mechanism to achieve this "win-win" scenario is ambiguous.
- Gap 3: no empirical justification regarding polycentricity in Germany—one of the most polycentric country in the EU.

#### In response to the integral benefits of polycentricity:

- Whether polycentric development results in greater economic growth *and* fewer regional inequalities?
- The reasons and mechanisms for the finding—borrowing size and agglomeration shadow effects.

## **Theoretical and policy debates**

#### PURs and economic productivity:

- City-scale evidence:
  - monocentric (AMM) model vs. polycentric model;
  - agglomeration economies vs. agglomeration diseconomies
- megacity regions, polycentric metropolis (Hall and Pain, 2006; Parr, 2008)
  - Randstad of Netherland, Ruhr of Germany, Yangtze River Delta of China
  - economic benefits can scale up to regions (Phelps, 2004, Parr, 2008)
- alternative explanation for agglomeration benefits
  - "regional externalities" and "urban network externalities" (Parr, 2004; Capello, 2000)
  - PURs are better suited to realize regional network and the associated benefits.

#### PURs and regional disparities:

- Spillover effects—economic benefits -> large cities -> small cities -> peripheral and rural areas (CEC, 2004, ESDP, 1999, EU, 2011)
- Achieve via regional urban network and cooperation.
- Mixed results in empirical studies.

- **Borrowed size** (Alonso, 1964): smaller cities achieve better economic performance by leveraging network spillovers
- Agglomeration shadows: the negative side of network externalities.

- **Borrowed size** (Alonso, 1964): smaller cities achieve better economic performance by leveraging network spillovers
- Agglomeration shadows: the negative side of network externalities.



- **Borrowed size** (Alonso, 1964): smaller cities achieve better economic performance by leveraging network spillovers
- Agglomeration shadows: the negative side of network externalities.



- **Borrowed size** (Alonso, 1964): smaller cities achieve better economic performance by leveraging network spillovers
- Agglomeration shadows: the negative side of network externalities.



- **Borrowed size** (Alonso, 1964): smaller cities achieve better economic performance by leveraging network spillovers
- Agglomeration shadows: the negative side of network externalities.



**Polycentricity and Economic performance?** 

PURs Borrowed size

## **Polycentricity and Economic performance?**







## **Polycentricity and Economic performance?**



# **Study regions and datasets**

German urban regions (Großstadtregionen)

- one or multiple **urban cores** with a population greater than 100,000
- **hinterlands** with strong commuting relationships with the cores.
- good representation of the regional labor market and the functional urbanized area.
- 45 regions

#### Datasets

- Economic data: INKAR data platform (BBSR)
- Commuting flow: the Federal Employment Agency
- Historical variables for IVs:
  - (1) topography: SRTM DEM product
  - (2) historical population: Roesel (2022)



## Method—measuring polycentricity

Functional polycentricity:

 $P_F(n) = (1 - \sigma_f / \sigma_{fmax}) * \Delta$ 

 $σ_f$ : std.dev of **commuting flows** among municipalities  $σ_{f,\max}$ : std.dev of benchmark monocentric region; Δ: density of the network



Higher level of functional polycentricity

Morphological polycentricity:

 $P_i(n) = 1 - \sigma_n / \sigma_{\max} (n = 2,3,4)$ 

 $\sigma_n$ : std.dev of **employment** distribution among municipalities

Rank-size distribution:

 $\ln(Rank) = \alpha + \beta \ln (size)$ 

*Size:* employment of a municipality, *Rank:* the rank of employment within an urban region



Higher level of morphological polycentricity

#### **Empirical strategy (Regional-scale models)**

1. Economic inequalities and polycentricity:

$$Gini_i = c_i + \alpha_0 Poly_i + \alpha_1 GDPpc_i + \alpha_2 Pop_i + \alpha_3 Unemploy_i + \alpha_4 Redistr_i + \alpha_r + \epsilon_i$$
(2)

- *Gini*<sub>*i*</sub> is the Gini coefficient for urban region *i*.
- *Poly<sub>i</sub>*: the degree of polycentricity
- Control variables: GDP per capita, total population, unemployment rate, fiscal equalization funds, regional dummies.

2. Economic performance and polycentricity:

$$GDPpc_{i} = c_{i} + \beta_{0}Poly_{i} + \beta_{1}PhyInv_{p}c_{i} + \beta_{2}Pop_{i} + \beta_{3}Education_{i} + \alpha_{r} + \epsilon_{i}$$
(3)

- *GDPpc<sub>i</sub>*: GDP per capita for urban region *i*.
- *Poly<sub>i</sub>*: the degree of polycentricity
- Control variables: per capita physical investment expenditure , the share of employees with a college degree, and population, regional dummies.

#### **Empirical strategy (District-level model)**

Whether districts embedded in polycentric urban regions are able to borrow size from each other?

- A "win-win" scenario? Spillovers are shared by both urban core(s) and peripheries
- A "win-lose" scenario? Favor one at the expense of the other?

$$GDPpc_d = c_d + \gamma_0 Poly_d \times UrbanCore_d + \gamma_1 Poly_d + \gamma_2 UrbanCore_d + \gamma x_d + s_d + \epsilon_d$$
(4)

- $UrbanCore_d$ : whether a district d is an urban core or a periphery within an urban region.
- $Poly_d$ : the degree of *regional* polycentricity.
- *Poly<sub>d</sub>* \* *UrbanCore<sub>d</sub>*: determine who benefits from polycentricity (core? Peripheries? or both?)

## **Empirical strategy - 2SLS**

- Reverse causation: polycentricity—both a cause and consequence of regional socio-economic realities (Meijers and Burger, 2010; Wang et al., 2019)
- Instrumental variables (IV):
  - historical degree of polycentricity for urban regions in 1871
  - natural topography

First-stage:  $\widehat{Poly_i} = \delta Poly_{1871} + \lambda Topo_i + \gamma x_{it} + \alpha_i + \eta_i$ Second-stage:  $y_i = \beta + \widehat{Poly_i} + \gamma x_{it} + \alpha_i + \epsilon_i$ 



Historical IV: Germany Population in 1871 at the district level



IV of natural condition: topography of Germany

#### **Result: relationship between different measures of polycentricity**



#### **Result: relationship between polycentricity and regional disparities**

**Table 2.** Cross-sectional regressions to test the effect of functional polycentricity (Poly\_Fun) on regionaldisparities, as measured by the Gini coefficient in 2007 and 2017 using OLS and 2SLS estimators.

|                               | OLS                    |                    | 2SLS               |                    |  |
|-------------------------------|------------------------|--------------------|--------------------|--------------------|--|
| Variables <sup>c</sup>        | 2007                   | 2017               | 2007               | 2017               |  |
| (in logarithmic form)         | Model (I)              | Model (2)          | Model (3)          | Model (4)          |  |
| Poly_Fun                      | -0.359* (0.1426)       | -0.4787** (0.1471) | -0.3145 (0.1633)   | -0.5552** (0.163)  |  |
| Population                    | -0.2594** (0.0727)     | -0.1627** (0.0583) | -0.2519** (0.0631) | -0.1733** (0.0544) |  |
| GDP per capita                | 1.9814** (0.4302)      | 2.0449** (0.2464)  | 1.9379** (0.3669)  | 2.0841** (0.2345)  |  |
| Unemployment                  | 0.6553* (0.322)        | 0.2798 (0.3382)    | 0.5987* (0.2934)   | 0.3336 (0.3258)    |  |
| Redistribution per capita     | -0.0418 (0.1823)       | 0.2467 (0.149)     | -0.0848 (0.1531)   | 0.2989* (0.1425)   |  |
| Kleibergen-Paap F-statisti    | cs (Weak IV test)      |                    | 16.366             | 14.032             |  |
| Sargan-Hansen statistics (    | overidentification tes | t)                 | 0.919              | 0.480              |  |
| Endogeneity test              |                        |                    | 0.584              | 0.470              |  |
| Regional dummies <sup>a</sup> | Yes                    | Yes                | Yes                | Yes                |  |
| Constant                      | -6.5294** (2.2097)     | -9.802** (I.8894)  | -6.0319** (1.883)  | -10.323** (1.8695) |  |
| Observations <sup>b</sup>     | 44                     | 44                 | 44                 | 44                 |  |
| R <sup>2</sup>                | 0.5964                 | 0.6773             | 0.5935             | 0.6741             |  |

Robust standard errors are in parentheses.

<sup>a</sup>All regressions include regional dummy variables (East, North, West, South).

<sup>b</sup>The urban region Aachen is removed from all models due to missing values of the Gini coefficient.

<sup>c</sup>All variables, except the dummy variables, are in logarithmic form.

\*\*p<0.01. \*p<0.05.

## **Result: robustness check—regional disparities**

**Table 3.** Robustness check of the effects of different measures of polycentricity on regional disparities and economic productivity using 2SLS estimators.

| Variables<br>Poly_Fun<br>Poly_Morp | 2007-2SLS                            |                                        |                                         | 2017-2SLS                               |                                          |                                          |
|------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|
|                                    | Gini coefficient<br>(Gini)           | Coefficient of variations (Cov)        | Population-weighted<br>Gini (pwgini)    | Gini coefficient<br>(Gini)              | Coefficient of variations (Cov)          | Population-weighted<br>Gini (pwgini)     |
|                                    | -0.3145 (0.1633)<br>-0.2855 (0.1703) | -0.3732* (0.1718)<br>-0.3475* (0.1701) | -0.4768** (0.1794)<br>-0.4675* (0.1938) | -0.5552** (0.163)<br>-0.5857** (0.1919) | -0.5558** (0.1628)<br>-0.5903** (0.1988) | -0.6690** (0.1685)<br>-0.7043** (0.2060) |
| Poly_Ranksize                      | -0.5158 (0.3213)                     | -0.6084 (0.3254)                       | -0.8489* (0.3726)                       | -1.0157** (0.3493)                      | -1.032** (0.3611)                        | -1.2186** (0.3765)                       |

Panel A: Robustness check for regional disparity regressions

Robust standard errors are in parentheses. Regressions include all control variables. \*\*p < 0.01. \*p < 0.05.

#### **Result: relationship between polycentricity and economic productivity**

**Table 4.** Cross-sectional regressions to test the effect of functional polycentricity (Poly\_Fun) on economic productivity measured by GDP per capita in 2007 and 2017 using OLS and 2SLS estimators.

| Variables (in<br>Iogarithmic form) | OLS                     |                  | 2SLS              |                   |  |
|------------------------------------|-------------------------|------------------|-------------------|-------------------|--|
| 6 /                                | 2007                    | 2017             | 2007              | 2017              |  |
|                                    | Model (I)               | Model (2)        | Model (3)         | Model (4)         |  |
| Poly_Fun                           | -0.0435 (0.0537)        | -0.0201 (0.058)  | 0.0347 (0.0805)   | 0.0847 (0.0868)   |  |
| Population                         | 0.0723* (0.0351)        | 0.0427 (0.0311)  | 0.0656* (0.0288)  | 0.0407 (0.0301)   |  |
| Investment per capita <sup>b</sup> | 0.1459* (0.0539)        | 0.2148* (0.0966) | 0.1263** (0.0477) | 0.205* (0.0899)   |  |
| Education                          | 0.2722* (0.1222)        | 0.3432* (0.1272) | 0.3363* (0.1399)  | 0.4407** (0.1565) |  |
| Kleibergen-Paap F-statist          | ics (Weak IV test)      |                  | 30.293            | 36.150            |  |
| Sargan-Hansen statistics           | (overidentification tes | st)              | 0.741             | 2.043             |  |
| Endogeneity test                   |                         |                  | 2.305             | 3.187             |  |
| Regional dummies <sup>a</sup>      | Yes                     | Yes              | Yes               | Yes               |  |
| Constant                           | 0.5563 (0.4443)         | 0.7583 (0.5914)  | 0.6981 (0.4767)   | 0.7263 (0.5733)   |  |
| Observations <sup>c</sup>          | 42                      | 45               | 42                | 45                |  |
| R <sup>2</sup>                     | 0.6703                  | 0.5534           | 0.646             | 0.5095            |  |

Robust standard errors are in parentheses.

<sup>a</sup>All regressions include regional dummy variables (East, North, West, South).

<sup>b</sup>The missing values in the 2007 physical investment per capita variable are replaced by the corresponding values in 2009 and 2013.

<sup>c</sup>Three urban regions, Saarbrücken, Erfurt, and Jena, are dropped from the 2007 regressions due to missing data. \*\*p < 0.01. \*p < 0.05.

## **Result: robustness check—economic productivity**

 Table 3. Robustness check of the effects of different measures of polycentricity on regional disparities and economic productivity using 2SLS estimators.

| Variables        | 2007-2SLS                  |                                 |                                      | 2017-2SLS                  |                                 |                                      |
|------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------|---------------------------------|--------------------------------------|
|                  | Gini coefficient<br>(Gini) | Coefficient of variations (Cov) | Population-weighted<br>Gini (pwgini) | Gini coefficient<br>(Gini) | Coefficient of variations (Cov) | Population-weighted<br>Gini (pwgini) |
| Poly_Fun         | -0.3145 (0.1633)           | -0.3732* (0.1718)               | -0.4768** (0.1794)                   | -0.5552** (0.163)          | -0.5558** (0.1628)              | -0.6690** (0.1685)                   |
| Poly_Morp        | -0.2855 (0.1703)           | -0.3475* (0.1701)               | -0.4675* (0.1938)                    | -0.5857** (0.1919)         | -0.5903** (0.1988)              | -0.7043** (0.2060)                   |
| Poly_Ranksize    | -0.5158 (0.3213)           | -0.6084 (0.3254)                | -0.8489* (0.3726)                    | -1.0157** (0.3493)         | -1.032** (0.3611)               | -1.2186** (0.3765)                   |
| Panel B: Robustn | ess check for economic     | productivity regressions        | 5                                    |                            |                                 |                                      |
| Variables        | 2007-2SLS                  |                                 |                                      | 2017-2SLS                  |                                 |                                      |
|                  | GDP per capita             |                                 |                                      | GDP per capita             |                                 |                                      |
| Poly_Fun         | 0.0347 (0.0805)            |                                 |                                      | 0.0847 (0.0868)            |                                 |                                      |
| Poly_Morp        | 0.0359 (0.0685)            |                                 |                                      | 0.967 (0.0988)             |                                 |                                      |
| Poly Ranksize    | 0.0625 (0.1708)            |                                 |                                      | 0.1580 (0.1836)            |                                 |                                      |

Panel A: Robustness check for regional disparity regressions

\*\*p<0.01. \*p<0.05.

#### Result: mechanism analysis at the district level

Model (4): a 100% increase in polycentricity in 2017 can contribute to a 10.55% increase in economic productivity for **peripheries**, also a decrease of 5.4% (10.55% minus 15.92%) for **urban cores**.

**Table 5.** Cross-sectional regressions at the district level to test the effect of functional polycentricity (Poly\_Fun) on economic productivity measured by GDP per capita in 2007 and 2017 using OLS and 2SLS estimators.

| Variables (in logarithmic form)    | OLS                            |                   |                   |                   | 2SLS              |                   |                   |                       |
|------------------------------------|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|
|                                    | 2007                           | 2007              | 2017              | 2017              | 2007              | 2007              | 2017              | 2017                  |
|                                    | (I) Poly                       | (2) Poly×Core     | (3) Poly          | (4) Poly×Core     | (5) Poly          | (6) Poly × Core   | (7) Poly          | (8) Poly $	imes$ Core |
| Poly_Fun                           | 0.0384 (0.0363)                | 0.0805* (0.0365)  | 0.0733* (0.0339)  | 0.1055** (0.0347) | 0.0522 (0.050)    | 0.0825 (0.0481)   | 0.1006* (0.0473)  | 0.1227* (0.0504)      |
| $UrbanCore 	imes Poly_Fun$         |                                | -0.199** (0.0753) |                   | -0.1592* (0.066)  |                   | -0.1608* (0.078)  |                   | -0.1272* (0.0646)     |
| UrbanCore                          | 0.3951** (0.051)               | 0.1956* (0.0814)  | 0.3336** (0.0501) | 0.1759* (0.0729)  | 0.3935** (0.0489) | 0.2326** (0.0876) | 0.3295** (0.0437) | 0.2097** (0.0772)     |
| Population                         | -0.0732* (0.0348)              | -0.0755* (0.0336) | -0.0702* (0.0324) | -0.0715* (0.0315) | -0.0728* (0.0336) | -0.0748* (0.0325) | -0.0688* (0.0278) | -0.0697* (0.0299)     |
| Investment per capita <sup>b</sup> | 0.1693** (0.0461)              | 0.1791** (0.0451) | 0.1581** (0.0542) | 0.1638** (0.0537) | 0.1707** (0.0454) | 0.1783** (0.0434) | 0.1613** (0.0348) | 0.1655** (0.0521)     |
| Education                          | 0.4663** (0.049)               | 0.4513** (0.0469) | 0.4729** (0.0596) | 0.4565** (0.0571) | 0.4688** (0.0487) | 0.4561** (0.0477) | 0.4802** (0.0532) | 0.4621** (0.0591)     |
| Kleibergen-Paap F-statistic        | s (Weak IV test)               |                   |                   |                   | 157.495           | 83.688            | 137.144           | 85.628                |
| Sargan-Hansen statistics (c        | overidentification test)       |                   |                   |                   | 0.616             | 1.866             | 0.024             | 0.618                 |
| Endogeneity test                   |                                |                   |                   |                   | 0.053             | 0.100             | 0.543             | 0.030                 |
| State dummies <sup>a</sup>         | Yes                            | Yes               | Yes               | Yes               | Yes               | Yes               | Yes               | Yes                   |
| Constant                           | I.9I38 <sup>≉</sup> * (0.4589) | 2.2876** (0.4529) | 2.4056** (0.4348) | 2.4635** (0.4224) | 2.2318** (0.4594) | 2.2733** (0.4426) | 2.3732** (0.3632) | 2.4288** (0.4121)     |
| Observations <sup>c</sup>          | 230                            | 230               | 250               | 250               | 230               | 230               | 250               | 250                   |
| R <sup>2</sup>                     | 0.7206                         | 0.7326            | 0.6682            | 0.6778            | 0.7204            | 0.7309            | 0.6674            | 0.6754                |

Robust standard errors are in parentheses.

<sup>a</sup>All regressions include 13 state dummies. Notably, the city-state Berlin is merged into Brandenburg, the city-state Hamburg is merged into Schleswig-Holstein, and Bremen is merged into Niedersachsen. <sup>b</sup>The missing values in the 2007 physical investment per capita variable are replaced by the corresponding values in 2009 and 2013.

<sup>c</sup>Observations dropped due to missing values include districts in urban regions of Erfurt and Jena, Aachen, and Reutlingen in 2007; and districts in Aachen and Reutlingen in 2017.

\*\*p<0.01. \*p<0.05.

#### **Result: mechanism analysis at the district level**



**Figure 3.** The scatterplots and corresponding fitted lines display the relationship between the degree of polycentricity and the economic productivity of peripheral districts and urban cores.

- **Borrowed size** (Alonso, 1964): smaller cities achieve better economic performance by leveraging network spillovers
- Agglomeration shadows: the negative side of network externalities.



## **Polycentricity and Economic performance?**



## **Result: robustness check—mechanism analysis at the district level**

| Panel A: Robustness check using Poly_Morp |                   |                             |                    |                      |  |  |  |
|-------------------------------------------|-------------------|-----------------------------|--------------------|----------------------|--|--|--|
|                                           | 2007              | 2007                        | 2017               | 2017                 |  |  |  |
|                                           | (I) Poly          | (2) UrbanCore × Poly        | (3) Poly           | (4) UrbanCore×Poly   |  |  |  |
| Poly_Morp                                 | 0.0686 (0.0625)   | 0.1004 (0.0611)             | 0.1136* (0.0567)   | 0.1504* (0.0585)     |  |  |  |
| $UrbanCore 	imes Poly_Morp$               |                   | -0.1669* (0.073)            |                    | -0.2068** (0.0691)   |  |  |  |
| UrbanCore                                 | 0.3937** (0.0489) | 0.3098** (0.0582)           | 0.3310** (0.0439)  | 0.2345** (0.0539)    |  |  |  |
| Panel B: Robustness check using P         | oly_Ranksize      |                             |                    |                      |  |  |  |
|                                           | 2007              | 2007                        | 2017               | 2017                 |  |  |  |
|                                           | (I) Poly          | (2) UrbanCore $\times$ Poly | (3) Poly           | (4) UrbanCore × Poly |  |  |  |
| Poly_Ranksize                             | 0.1257 (0.1142)   | 0.1823 (0.1105)             | 0.2037* (0.1029)   | 0.2614* (0.1056)     |  |  |  |
| $UrbanCore 	imes Poly_Ranksize$           |                   | -0.2916* (0.1316)           |                    | -0.3193** (0.1148)   |  |  |  |
| UrbanCore                                 | 0.3929** (0.0490) | 0.5675** (0.0909)           | 0.3307*** (0.0442) | 0.5316** (0.0836)    |  |  |  |

 Table A1. Robustness check of the effect of polycentricity on economic productivity at the district level using 2SLS estimators.

Robust standard errors are in parentheses. Regressions include all control variables. \*\*p < 0.01. \*p < 0.05.

## **Conclusion and policy implication**

• Functional polycentricity displays a good fit with the morphological ones, and the different measures produce consistent results.

Achieving the integral goal of polycentricity?

- polycentric development *can* effectively reduce regional disparities
- polycentric development *cannot* simultaneously improve regional economic productivity.

#### Reasons and Mechanism?

- a "win-loss" game between peripheries and urban core(s) within the same urban region.
  - Peripheries develop at the expense of urban core(s) -> more equitable regions.
  - the losses of urban cores cancel out the gains of the peripheries
  - the borrowed size effect yields similar overall economic outcomes to the agglomeration shadow effect

Not a panacea to address various regional issues simultaneously.

 monocentric regions may consider polycentricism as an effective way of reducing regional economic disparities and to facilitate peripheries.

# **Questions and Comments**

# Thank you!

Contact info: Wenzheng Li (<u>wl563@cornell.edu</u>) Stephan Schmidt (<u>sjs96@cornell.edu</u>)

Li, Wenzheng, Stephan Schmidt, and Stefan Siedentop. "Can polycentric urban development simultaneously achieve both economic growth and regional equity? A multi-scale analysis of German regions." *Environment and Planning A: Economy and Space* (2023): 0308518X231191943.

# Introduction

#### Scholarly debates on polycentric urban regions:

- have moved beyond methodological discussions of operationalization and measurement
- to explaining urban spatial structure and discussing the outcomes of spatial patterns.

#### **Existing studies:**

- Measures of polycentricity
  - Center identification: Giuliano and Small (1991), McMillen (2001)
  - Morphological and functional terms (Green, 2007; Meijers and Burger, 2010; Zhang and Derudder, 2019)
- Empirical studies
  - Evidence of polycentricity: Arribas-Bei and Sanz-Gracia (2014), Li and Derudder (2022); Lee (2007)
  - Benefits Justification:
    - Economic productivity, regional disparities, air quality (Ouwehand, 2022; Meijers and Sandberg, 2008; Sun et al., 2017; Han et al., 2018)
    - Multiple countries—the United States, China, OECD (Brezzi and Veneri, 2015), Spain (Garcia-Lopez and Muñiz, 2010), Italy (Veneri, 2010)