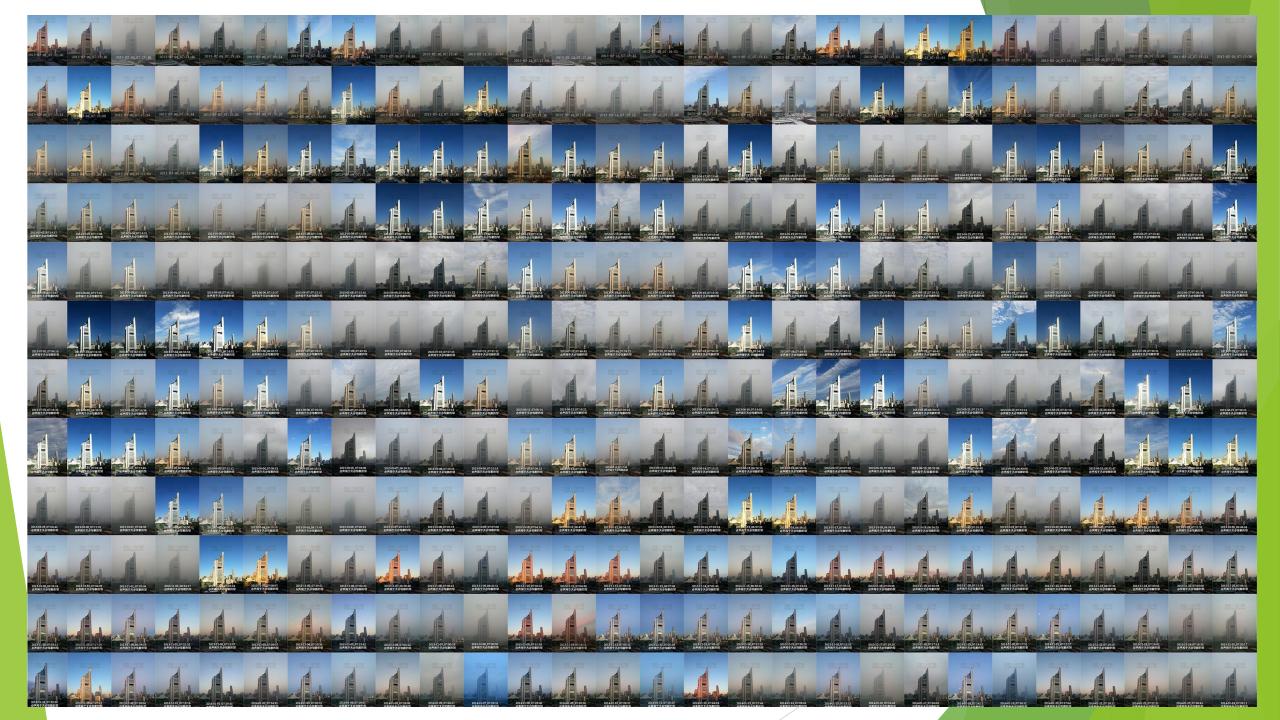
Air Quality and Housing Price: An Empirical Analysis in Beijing


Ziye Zhang, Princeton University Wenzheng Li, Cornell University

2020.11.13

Background

Air quality and housing price have been investigated for a long time

Since Ridker and Henning (1967)

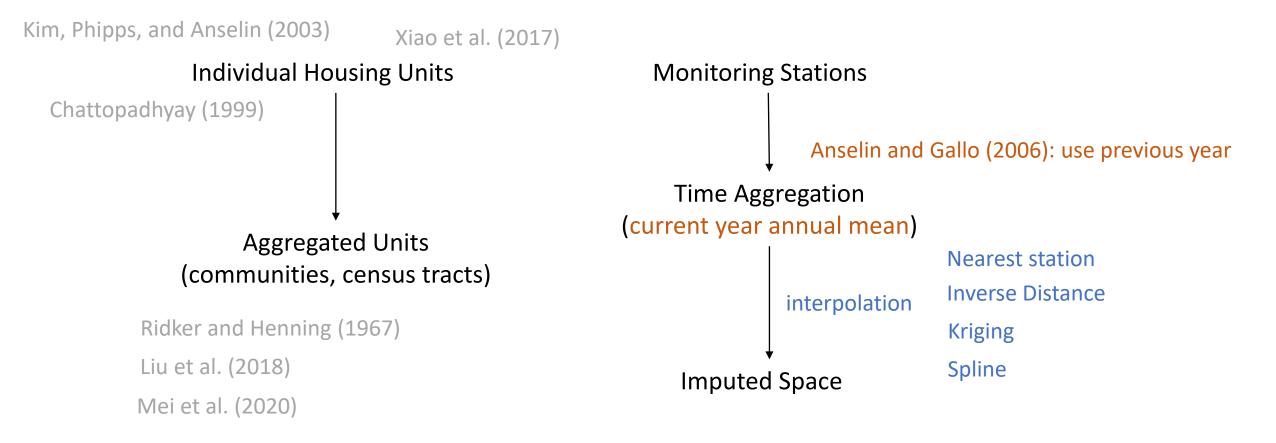
Background

Air quality and housing price have been investigated for a long time

Since Ridker and Henning (1967)

- Air pollution is negatively associated with housing prices
- Several methodological issues remain to be addressed

Research Focus


▶ How to include an air quality variable to hedonic house price models?

- Measure of pollution: a few monitor stations in a region
- ► Home sales: spatially distributed across the whole region

Matching Housing Price and Air Quality

Housing Data

Air Quality

Considerable differences between interpolators (Anselin and Gallo, 2006)

Model	Thiessen	IDW	Kriging	Spline
OLS	\$3,028	\$4,889	\$6,468	\$4,925
	(\$2,699-3,357)	(\$4,519-5,241)	(\$6,127-6,808)	(\$4,592-5,258)
	1.26%	2.04%	2.70%	2.06%
	(1.13 - 1.40%)	(1.89 - 2.19%)	(2.56 - 2.84%)	(1.92 - 2.20%)
Lag-IVR	\$4,087	\$6,031	\$7,444	\$5,899
	(\$3,609-4,566)	(\$5,496-6,567)	(\$6,920-7,969)	(\$5,394-6,404)
	1.71%	2.52%	3.11%	2.46%
	(1.51 - 1.91%)	(2.29 - 2.74%)	(2.89 - 3.33%)	(2.25 - 2.67%)

Table 7. Analytical marginal willingness to pay, by interpolator^a

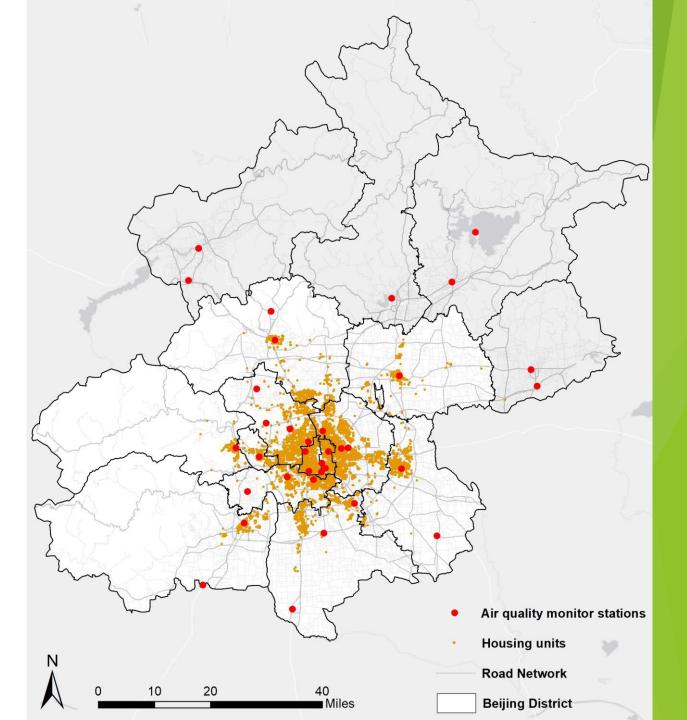
^a Uniform 1 ppb O₃ improvement, assuming average house price. Two standard error bounds are given in parentheses.

Data Source

Housing Data

Lianjia.com

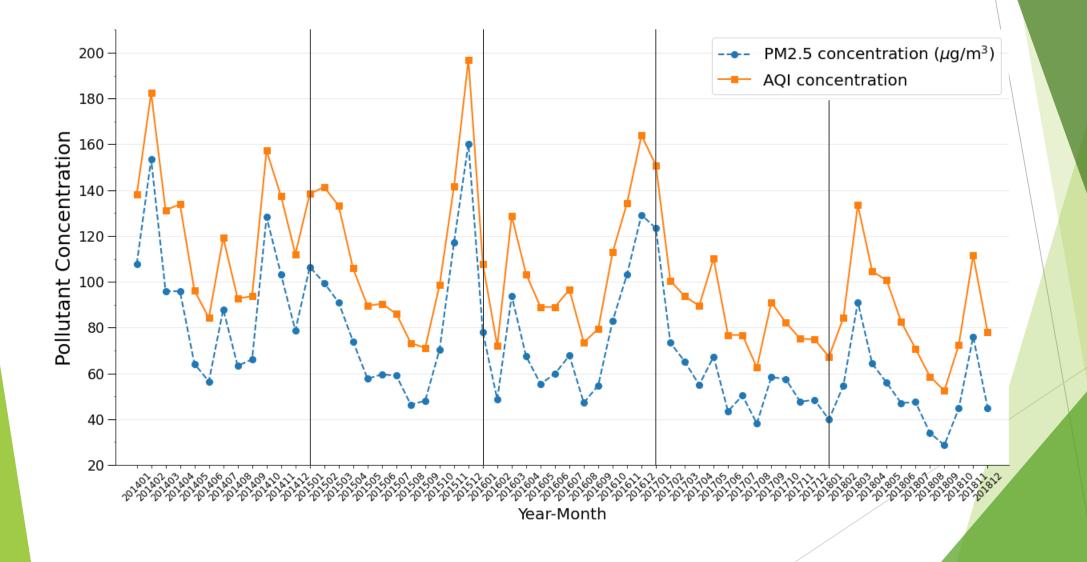
- The largest resale home agency in Beijing
- 557,998 resale home transactions 2014-2018

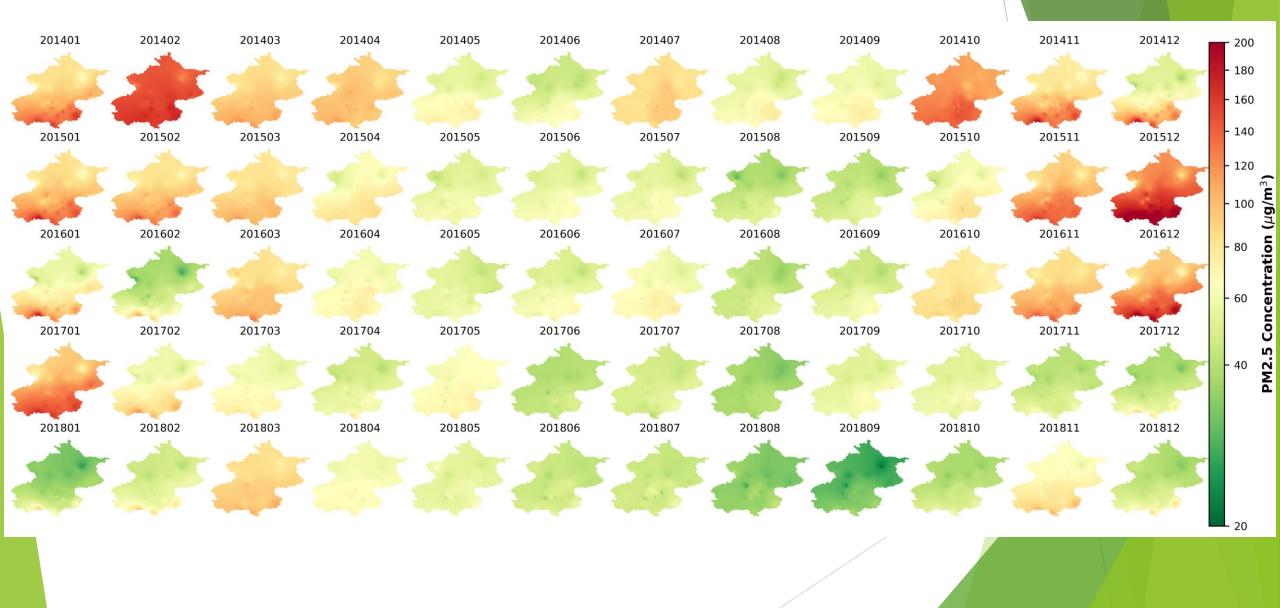


Air Quality Data

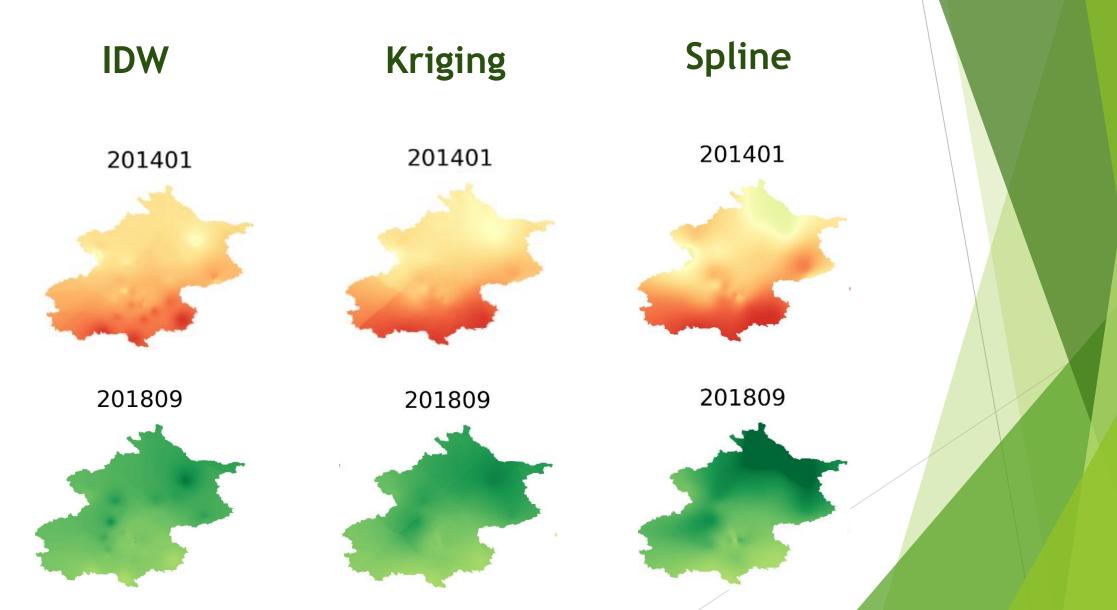
PM 2.5

- Beijing Municipal Environmental and Monitoring Center (BJMEMC)
- 35 in-situ monitoring stations from December 5th, 2013, to December 31st, 2018


Resale Home Sample & Monitoring Station


Fine particles (diameter<2.5 mm)</p>

More hazardous than larger particles (2.5 mm< diameter<10 mm, PM10) in terms of mortality, cardiovascular and respiratory endpoints, and PM2.5 is considered to be the best indicator of the level of health (Freeman et al., 2019)


PM2.5 and AQI (2014-2018)

Spatial Interpolation

Difference in Spatial Interpolation Methods

Model Specification

 $ln(P) = \beta_0$

+ $\beta_1 Air Quality$	PM2.5 with different specifications
+ β_2 Housing Attribute	bedroom, living room, bathroom, floor area, floor level, facing, total number of floor, year built, elevator; distance to subway, school level, hospital, distance to CBD, distance to park
$+\beta_3$ Time FE	month, year, month * year

 $+ \beta_4$ District FE

Estimation Results (PM2.5/100)

Days	Nearest Station (NN)			Kriging			Spline			Dist_Nearest Station	Dist_IDW	Dist_Kriging	Dist_Spline	
		$1000 \mathrm{m}$	2000m	3000m	$1000 \mathrm{m}$	2000m	3000m	$1000 \mathrm{m}$	2000m	3000m	(NN)			
0	-0.001	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	0.002***	0.002***	0.003***	0.003***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
3	-0.004***	-0.003**	-0.002**	-0.002**	-0.004***	-0.004***	-0.004***	-0.004**	-0.004**	-0.004**	0.001^{*}	0.002***	0.002**	0.002**
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)
10	-0.024***	-0.021***	-0.021***	-0.021***	-0.025***	-0.025***	-0.024***	-0.024***	-0.024***	-0.024***	-0.007***	-0.007***	-0.007***	-0.006***
	(0.005)	(0.003)	(0.003)	(0.003)	(0.004)	(0.004)	(0.004)	(0.005)	(0.005)	(0.005)	(0.002)	(0.002)	(0.002)	(0.002)
15	-0.033***	-0.030***	-0.029***	-0.029***	-0.035***	-0.035***	-0.034***	-0.033***	-0.033***	-0.033***	-0.007***	-0.007***	-0.006***	-0.005**
	(0.007)	(0.005)	(0.005)	(0.005)	(0.006)	(0.006)	(0.006)	(0.008)	(0.008)	(0.008)	(0.002)	(0.002)	(0.002)	(0.002)
30	-0.058*** (0.017)	-0.055*** (0.012)	-0.055*** (0.012)	-0.054*** (0.012)	-0.068*** (0.014)	-0.068*** (0.014)	-0.066*** (0.014)	-0.059*** (0.019)	-0.059*** (0.018)	-0.060*** (0.018)	0.007 (0.005)	0.011** (0.005)	$ \begin{array}{c} 0.009 \\ (0.005) \end{array} $	$0.011^{\bullet\bullet}$ (0.005)
60	-0.140***	-0.163***	-0.163***	-0.162***	-0.178***	-0.177***	-0.175***	-0.143***	-0.144***	-0.147***	-0.011	-0.011	-0.009	-0.003
	(0.031)	(0.026)	(0.026)	(0.026)	(0.030)	(0.030)	(0.030)	(0.035)	(0.035)	(0.035)	(0.010)	(0.010)	(0.009)	(0.009)
90	-0.222****	-0.301***	-0.303***	-0.303***	-0.305***	-0.304***	-0.302***	-0.229***	-0.233***	-0.238***	-0.033***	-0.039***	-0.029**	-0.019
	(0.044)	(0.043)	(0.043)	(0.043)	(0.047)	(0.047)	(0.047)	(0.051)	(0.051)	(0.051)	(0.014)	(0.015)	(0.013)	(0.013)
180	-0.349***	-0.509***	-0.513***	-0.517***	-0.522***	-0.521***	-0.519***	-0.364***	-0.372***	-0.385***	-0.061***	-0.051*	-0.042*	-0.027*
	(0.069)	(0.076)	(0.076)	(0.077)	(0.081)	(0.081)	(0.081)	(0.080)	(0.081)	(0.082)	(0.027)	(0.030)	(0.025)	(0.023)
270	-0.477***	-0.727***	-0.735***	-0.744^{***}	-0.761^{***}	-0.760^{***}	-0.758^{***}	-0.509***	-0.522***	-0.543***	-0.129***	-0.118***	-0.102***	-0.079**
	(0.088)	(0.102)	(0.103)	(0.104)	(0.110)	(0.110)	(0.110)	(0.103)	(0.104)	(0.106)	(0.040)	(0.042)	(0.037)	(0.033)
360	-0.551***	-0.861***	-0.871***	-0.882***	-0.915***	-0.914***	-0.912***	-0.598***	-0.614^{***}	-0.641***	-0.149***	-0.114**	-0.105**	-0.083**
	(0.102)	(0.123)	(0.124)	(0.127)	(0.133)	(0.133)	(0.134)	(0.122)	(0.124)	(0.126)	(0.050)	(0.050)	(0.046)	(0.041)
District FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ear \times Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

*The dependent variable is the housing price per square meter, *Standard errors clustered at the Jiedao level in parentheses.

* p < 0.05,** p < 0.01,*** p < 0.001

Individual Housing Units

		IDW		(Kriging)		Spline			
	Prior-360-Day	Current-Year	Previous-Year	Prior-360-Day	Current-Year	Previous-Year	Prior-360-Day	Current-Year	Previous-Year		
Air Quality	-0.0086*** (0.0012)	-0.0083*** (0.0015)	-0.0103*** (0.0017)	-0.0091*** (0.0012)	-0.0074*** (0.0015)	-0.0090*** (0.0017)	-0.0060*** (0.0012)	-0.0044*** (0.0010)	-0.0056*** (0.0012)		
Observations	498318	557998	493935	498318	557998	493935	498318	557998	493935		
R^2	0.788	0.790	0.790	0.790	0.790	0.791	0.787	0.788	0.788		
Adjusted \mathbb{R}^2	0.788	0.790	0.790	0.790	0.790	0.791	0.787	0.788	0.788		
AIC	-182398	-201406	-185343	-186189	-202998	-187271	-181328	-196252	-180895		
BIC	-182164	-201170	-185110	-185956	-202763	-187038	-181095	-196016	-180662		
District FE	Yes	Yes	Yes	Yes Yes	Yes	Yes	Yes Yes	Yes	Yes		
$V_{\rm ear} \times M_{\rm onth} FE$	Yes	Yes	Yes	Yes Yes	Yes	Yes	Yes Yes	ei et al (20			

*The dependent variable is the housing price per square meter, *Standard errors clustered at the Jiedao level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001

Mei et al (2020)

Unit price (/m2) increase by 0.8% -1.2% for 1µg/m3 decrease of annual PM2.5 value

IDW Kriging Spline Prior-360-Day Previous-Year Prior-360-Day Prior-360-Day Current-Year Current-Year Previous-Year Current-Year Previous-Year Air Quality -0.0023*** -0.0073*** -0.0076*** -0.0027*** -0.0072^{***} -0.0072*** -0.0021*** -0.0041^{***} -0.0045^{***} (0.0004)(0.0011)(0.0012)(0.0005)(0.0011)(0.0012)(0.0005)(0.0009)(0.0010)Observations 2571627904 23754257162790423754257162790423754 \mathbb{R}^2 0.8330.8320.8350.8340.8330.8360.8330.8310.833Adjusted R^2 0.8330.8320.8340.8340.8330.8360.8330.8310.833AIC -14689-13827-14787-13979-14717-15721-13656-15935-16151BIC-14559-15803-13698-14657-13850-14587-15589-16019-13527District FE Yes Year \times Month FE Yes Yes

Aggregated Communities (XiaoQu)

*The dependent variable is the housing price per square meter, *Standard errors clustered at the Jiedao level in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Conclusion

- The relationship between air quality and housing price is sensitive to the choice of spatial interpolation methods, the aggregation strategy, the time for air quality
- Unit price (/m²) increase by 0.72% for 1µg/m³ decrease of annual PM2.5 value

Thank you very much!

Any questions or comments are welcome!

Chen and Chen (2017)

Unit price (/m2) increase by 46 yuan/m2 (or \$6.6/m2) for 1µg/m3 decrease in annual PM2.5 value.

Freeman (2019)

The median household is willingness to pay \$21.70 for 1µg/m3 decrease in annual PM2.5 concentration

Mei et al (2020) Unit price (/m2) increase by 0.8% -1.2% for 1µg/m3 decrease of annual PM2.5 value

Qin et al (2019) Unit price (/m2) increase by 0.18%(OLS) or 0.32% (2SLS) for 100µg/m3 increaseof PM2.5 value on transaction day.