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Abstract

This study examines the efficacy of urban spatial patterns at alleviating the urban heat island (UHI)
effect in Germany’s city regions (GrofBstadtregionen) using multivariate and non-parametric re-
gression methods. Urban spatial patterns are quantified using five landscape metrics that capture the
spatial arrangement of urban footprints and greenspaces, along with a polycentricity index that
measures the distribution of human activities. The results indicate that certain features of urban
fabric, including fragmentation, mixed land use, and regular-shaped urban patches, have the po-
tential to mitigate the UHI effect. Moreover, dispersing multiple smaller greenspaces throughout the
urban area demonstrates a greater cooling effect compared to having a single large and more
aggregated park. In addition, our analysis reveals that a doubling (100%) of the polycentricity degree
corresponds to a significant decrease in both day- and night-time UHI effects, with reductions of
10.4% and 24.6%, respectively. This study confirms that polycentric development yields greater
benefits in reducing urban heat for large-sized city regions compared to medium- and small-sized
ones; and its effectiveness is mostly pronounced near urban center(s). These findings suggest that
polycentric development represents an efficient and feasible strategy for urban thermal planning of
large-sized city regions, surpassing other commonly discussed urban configurations, such as
compact or dispersed urban development.
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Introduction

The urban heat island (UHI) effect refers to the thermal anomaly of higher temperature in urban
areas compared with less densely populated rural areas. It is observed in human settlements of all
sizes and varies in intensity across multiple dimensions, such as urban and rural areas, diurnal and
nocturnal periods, and warm and cold seasons. The expansion of impervious surface, high pop-
ulation concentration, and reduced heat dissipation associated with urbanization are recognized as
important contributors to urban heat (Oke, 1982). The adverse impacts of the UHI effect have been
extensively well-documented, as it raises energy consumption, worsens air pollution, and increases
risks of heat-related mortality by exacerbating the intensity of heatwaves (Debbage and Shepherd,
2015; Gago et al., 2013). Notably, low-income and marginalized communities are particularly
vulnerable to high temperatures due to limited access to greenspaces and cooling resources.

City planners have engaged in ongoing debates concerning the potential of well-designed urban
forms to diminish the UHI effect. On the one hand, studies have suggested that a high-density and
compact urban development is positively correlated with high urban temperatures, as the mech-
anisms contributing to heat accumulation are amplified in densely populated urban areas (Debbage
and Shepherd, 2015; Schwarz and Manceur, 2015). However, others have yielded paradoxical
findings that sprawling configurations, characterized by low-density and fragmented urban de-
velopment, may also exacerbate UHI intensity due to greater impervious surface coverage and
higher per capita heat emission (Ewing and Rong, 2008; Shreevastava et al., 2019; Stone et al.,
2010; Stone and Rodgers, 2001). The inconclusive relationship between density and urban heat has
resulted in a dilemma over best management practices, highlighting the need for effective spatial
strategies regarding urban thermal planning.

Moreover, the focus on examining the relationship between density and heat has been to the
exclusion of broader questions linking the UHI effect with regional land-use patterns, as measured
by, for instance, the degree of land-use mix, aggregation, and polycentricity. The spatial ar-
rangement of land use and human activities, referred collectively to as urban spatial patterns, can
directly influence the intensity and distribution of urban heat (Debbage and Shepherd, 2015;
Schwarz and Manceur, 2015). Therefore, land-use and spatial planning policy may serve as an
effective tool to mitigate the UHI intensity. This is particularly true for German metropolitan
regions, where regional-scale planning and governance can have an outsized influence on the spatial
structure of urban settlements and open spaces through regulatory policies and the coordination of
land-use interests across multiple local municipalities and various sectoral plans in the spatial
planning process (Schmidt et al., 2018, 2021; Siedentop et al., 2022).

In addition, within the German planning guidelines, regional polycentrism has been identified as
integral to delivering more equitable opportunities and services (BMVBS, 2006, p7). It has also
been adopted broadly as a normative goal to achieve more cohesive and sustainable territorial
development across the EU (see, e.g., ESDP, 1999; EU Ministers, 2020; European Union, 2011). A
polycentric urban system encompasses multiple centers, characterized by a more balanced dis-
tribution of employment and population, a less hierarchical spatial organization, and a network of
interconnections among these centers (Davoudi, 2003). Polycentric regions distribute urban ac-
tivities across multiple centers or cities rather than relying on a single center, resulting in lower
densities in urban cores and reduced spatial aggregation in urban footprints. Meanwhile, the
compact design of multiple centers helps curtail the excessive expansion of impervious surface and
reduces energy consumption per capita compared with urban sprawling patterns. Given these
considerations, polycentric spatial development is hypothesized to offer a more sustainable and
efficient approach to urban thermal planning (Han et al., 2022; Yue et al., 2019).

While previous studies have explored the relationship between urban spatial patterns and the
UHI effect in the US and China (Debbage and Shepherd, 2015; Liu et al., 2021; Stone et al., 2010),
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Germany-based investigations have mostly focused on case studies of specific cities (Schwarz et al.,
2012; Straub et al., 2019), thus lacking universal conclusions that can be generalized to a wider
range of metropolitan regions. The increasing number of deaths in Western Europe caused by severe
heatwaves and drought in recent years highlights the urgency of implementing spatial planning
policies to mitigate heat intensity and reduce heat-related costs. Furthermore, existing studies have
primarily examined the mitigation of urban heat intensity through the lens of “compactness versus
sprawl” utilizing “traditional” metrics of land use patterns. However, the effectiveness of poly-
centric urban configuration, which assumes to combine the advantages of compactness and dis-
aggregation, has received limited empirical testing, particularly within the German context.

With this as a point of departure, this study aims to achieve two objectives. First, we assess the
impact of “traditional” land-use patterns, including measures of land-use composition, fragmen-
tation, and shape complexity on the UHI effect. Second, we investigate the capacity of a polycentric
spatial pattern to mitigate urban heat. As far as we know, the relationship between polycentricity and
urban heat has not been empirically examined in Germany. Furthermore, previous studies have
suggested that large (and denser) regions can effectuate greater benefits from adopting a polycentric
configuration than small ones, primarily because polycentrism can alleviate the agglomeration
diseconomies inherent to large regions, such as overcrowding and congestion (Han et al., 2020; Li
and Liu, 2018). To this end, we explore the heterogeneous influence of polycentricity on the UHI
effect, while controlling for population size. We hypothesize that polycentric development can more
efficiently redistribute concentrated activities of larger compared with smaller regions, thereby
mitigating the concentration and accumulation of human heat sources. Our analysis focuses on
50 city regions (Grofistadtregionen) as the basic spatial units and relies on the MODIS land surface
temperature (LST) dataset to calculate UHI intensities during the summer seasons (June, July, and
August, JJA) of 2006 and 2012, considering both day- and night-time measurements. We quantify
five traditional metrics of urban spatial pattern based on McGarigal and Marks (1995) and assess the
degree of polycentricity by examining the distribution of population among multiple centers,
following the works of Green (2007) and Liu and Wang (2016). Methodologically, we employ both
naive and multivariate OLS regressions to analyze the influences of urban spatial configuration on
the UHI effect. Furthermore, we utilize nonlinear local weighted regression and kernel density
estimates to compare temperature variations between polycentric and monocentric regions.

The paper is structured as follows. Section two describes the research area, data, and analytical
methods employed in this study. Emphasis is placed on the measures of the UHI effect and urban
spatial patterns, which are derived from satellite-based land surface temperature (LST) and land-use
datasets. Section three investigates the relationship between landscape metrics and the UHI effects
using naive and multivariate regressions. Section four discusses the impact of polycentrism on the
UHI effect, using both linear and nonlinear regression techniques. Finally, the last section sum-
marizes the findings and discusses policy implications for future urban thermal planning.

Research area, data, and method

Regional delineation

The selection of appropriate regional delineation is of great importance for two crucial purposes:
first, to accurately represent urbanized and rural areas for precise measurement of the UHI effect,
and second, to provide a reliable approximation of functional urban areas for quantifying poly-
centric urban structure (Thomas et al., 2021). In this study, we chose 50 Germany city regions
(Grofstadtregionen) as the appropriate regional delineation. Each region, serving as the basic unit
of analysis, comprises three hierarchical components (Milbert, 2016): one or multiple urban core(s)
with a minimum population of 100,000, which serve as the regional employment center(s); a large
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core area characterized by a mix of urban and rural landscapes, exhibiting strong bi-directional
commuting relations with the urban core(s); and a peripheral commuting zone where at least 25% of
workers commute to the core areas, primarily displaying rural landscapes (see Figure 1 taking
Berlin/Potsdam as an example). By incorporating both urban and hinterland areas and considering
the extensive internal connectivity, our regional delineation ensures accurate measurement of the
UHI effect and provides a robust approximation of functional urban areas.

Quantifying the urban heat island effect

The UHI effect is quantified as the temperature difference between the average surface temperature
of urbanized area and rural area, as expressed by equation (1).
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Figure I. Theillustrations of urbanized and rural areas delineation (step |) and the quantification of the urban
heat island (UHI) effect (step 2).
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To calculate the UHI effect, the first step involves delineating urbanized and rural areas, followed
by computing the mean land surface temperature, 7y, and T, . Figure 1 provides an illustrative
example of these processes using Berlin/Potsdam as a reference. To delineate urbanized areas, we
employed the approach proposed by Debbage and Shepherd (2015), which first establishes an urban
boundary for each region, and second, extracts artificial surfaces' within the boundary based on the
CORINE land cover (CLC) imagery. Two definitions of the urban boundary were adopted. The first
one comprises the urban core(s) and large core area for each region, ensuring that the identified areas
are either part of the urban core(s) or closely associated with them. The second definition of urban
boundary is used to specifically examine the influence of polycentricity on the UHI effect, which
substitutes the extended core area with a smaller area restricted to only the urban core(s), allowing
for a more precise representation of heat intensity in the most densely populated areas. The CLC
dataset provides land cover classification at a spatial resolution of 100 m, covering all Western
Europe and is updated every six years. Consequently, the final delineation of the qualified urbanized
area encompasses all areas (pixels) classified as artificial surfaces within the defined urban
boundary.

Rural areas in the existing literature are typically defined as comprising all types of rural
landcovers in the hinterlands, excluding urban settlements and water bodies (Debbage and
Shepherd, 2015; Liu et al., 2021). However, satellite-derived LST measurements may present
significant variations across different rural landcovers, such as forests, agriculture, and bare rock,
owing to differences in solar albedo and the evaporative cooling effect detected by satellite sensors.
To address potential measurement errors resulting from the heterogeneous composition of rural
landcovers, we defined rural areas as specifically consisting of forested landcover, which exhibits
relatively homogeneous features in remote sensing monitoring, following the approach by Chen
et al. (2006). Accordingly, we confined the rural domain to forests within a defined rural boundary,
comparising the large core area and the commuting zone of a city region. Additionally, to eliminate
temperature variations caused by elevation differences between urbanized and rural areas, we
imposed an elevation criterion, which ensures that the elevations of selected areas (pixels) remain
within £100 m of the average elevation of the corresponding urbanized area.

In the subsequent step, we derived the mean LST of urbanized and rural areas for each region
from the MODIS Aqua LST product (MYD11A2 Version 6.1)* with a 1 km spatial resolution.
Urban geometry and the correction of atmospheric and surface emissivity effects are essential for
extracting accurate surface temperatures (Coutts et al., 2016). The LST was retrieved from the
thermal infrared band of MODIS through the generalized split-window algorithm, leveraging an
accurate radiative transfer model and a set of multi-dimensional look-up tables derived via radiative
transfer simulation to transfer band radiance (observed by bands 31 and 32) to land surface
temperature (Li, 2013). A series of validation studies confirms that the product accuracy is better
than 1k at all sites except for arid regions.” Utilizing the Aqua sensor enables us to acquire LST
measurements at approximately 1:30pm, corresponding to the time when urban temperatures reach
the maximum, as well as around 1:30am at night. To eliminate measurement errors due to cloud
cover, we collected a series of LST imageries covering three consecutive summer seasons to ensure
the coverage of the entire study areas and compute their average to obtain the final LST mea-
surement. This implies that the LST measurement for 2012 represents the average value derived
from a series of LST imageries obtained during the summers of 2011, 2012, and 2013. Data
processing was conducted on the Google Earth Engine (GEE) platform, and the sample code was
obtained from the NASA’s Applied Remote Sensing Training Program (ARSET)*. Subsequently,
for each region, we calculated the mean LST values for urbanized and rural areas by averaging the
LST values of all pertinent areas (pixels). Equation (1) is then employed to quantify the UHI effect
for both day- and night-time as illustrated in Figure 1.

mean
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Quantifying urban spatial patterns

We choose five “traditional” landscape metrics and a polycentricity index to investigate the as-
sociation between the UHI effect and urban spatial patterns, following previous works by Debbage
and Shepherd (2015), Liu et al. (2021), and Stone et al. (2010). The equation and definition for each
metric can be found in Table 1. The landscape metrics are calculated using the R package
“landscapemetrics,” which provides reimplementation of the majority of metrics originally de-
veloped by McGarigal and Marks (1995) in “Fragstats.” We create metrics for both urban land cover
and greenspaces.’

The percentage of like adjacencies (PLADJ) quantifies the degree of spatial aggregation of a
specific landcover by measuring the frequency of adjacent pixels between the focus class and other
classes. Increasing PLADJ values indicate a more aggregated pattern for pixels of the focus class,
eventually reaching maximum aggregation when all pixels merge into a single patch. We calculate
the PLADJ for both the urban footprint and urban greenspace within the large core area of each
region. By evaluating the PLADJ of greenspaces, we assess whether an aggregated or fragmented
spatial arrangement of greenspaces contributes more effectively to urban cooling. Patch density
(PD) evaluates the degree of fragmentation of urban footprint by measuring the number of urban
patches per region. PD is considered the opposite of PLADIJ, as higher PD values indicate a patchier
and more fragmented landscape pattern. The inclusion of these variables is a nod to a long-standing
debate in the field of landscape ecology and conservation biology over whether a “single large” or
“several small” (SLOSS) preserves were more effective in protecting habitat and biodiversity in an
otherwise fragmented landscape (Diamond, 1975).

The contagion index (CONTAG) quantifies the degree of mixed land use at the landscape level
by measuring the probability of adjacent pixels belonging to the same landcover. We expect that a
higher CONTAG value, suggesting a higher degree of homogenous land cover, is associated with
higher urban heat intensity. The area-weighted mean shape index (AWMSI) quantifies the degree of
patch irregularity. Increasing AWMSI value suggests a greater departure from a squared shape for
urban patches, reflecting increased irregularity and complexity in the overall shape. The ratio of
vegetated area (ROV) represents the proportion of all types of vegetated coverage, excluding
agriculture, within a city region. Higher ROV values are expected to be associated with a lower UHI
effect.

The polycentricity index quantifies the extent to which inhabitants are evenly distributed
throughout a city region, using a modified morphological polycentricity approach based on Green
(2007) and Liu and Wang (2016). The calculation of the polycentricity index involves two steps,
outlined in Table 1. In the first step, we determine the degree of polycentricity by benchmarking the
standard deviation (SD) of municipality populations against the SD of a hypothetical region
characterized by the highest degree of monocentricity, while considering a fixed number of centers.
In the second step, we compute the final polycentricity index for each region by averaging the
polycentricity indices derived from the top two, three, and four centers, following the method
employed by Meijers and Burger (2010) and Ouwehand et al. (2022).

Regression analysis

Multiple confounding factors may exert influence on the UHI effect, including the inherent at-
tributes of cities, such as population and landcover composition, as well as the external influences
from climate, weather, and seasons (Oke, 1982; Stewart, 2011). To account for the presence of these
factors, we adopt a multivariate OLS regression approach to estimate the impacts of urban spatial
patterns for the years 2006 and 2012, respectively, while controlling for population and climate
variables. The basic model is as follows
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UHI = ¢ + B,SPM; + pZ; + €; )

where UHI,; represents the UHI effect for region i. SPM; is one of the urban spatial pattern measures
for region i. The vector Z; contains a set of UHI control variables, including population density,°
day-time or night-time windspeed during the summer season, and a drought index derived from
gridded temperature and precipitation datasets. The sources for these datasets and descriptive
statistics for all variables in 2012 are provided in Table 2.

Previous studies have demonstrated that the impact of polycentric development on socio-
economic outcomes varies across cities and regions of different sizes (Meijers and Burger, 2010;
Ouwehand et al., 2022). We propose that the influence of polycentric development on the UHI effect
may vary contingent upon the size of regions, with large regions potentially reaping greater benefits.
This assumes that a polycentric configuration can effectively redistribute concentrated activities
among multiple urban cores of large-sized regions, thereby mitigating the concentration and ac-
cumulation of human heat sources. To test this hypothesis, we interact the variable of polycentricity
with region size, measured by total population, and the equation is expressed as

UHI; = ¢+ y,POLY; x PopSize; + 0Z; + €; 3)

where PopSize is a categorical variable, classifying regions into three equal-sized groups based on
population size. The coefficient y, captures the varying effects of polycentricity on the UHI effect,
moderated by population size of the region i.

Table 2. Descriptive statistics and data sources of variables collected for the year 2012 (N = 49).

Variables Mean Std. Dev Median Min Max
Dependent variables
UHI_day® 3.994 .859 4.066 2013 5.885
UHI_night* 911 404 0.875 .053 1.668
Variables of interest
PLADJ_urbanb 87.489 2.208 87.513 82.022 91.983
PD® 439 2 0.366 177 .958
CONTAG® 48.45 4.854 47.701 38.222 62.99
AWMS|® 5.154 2.057 4432 2.635 11.002
PLADJ_Greenb 76.762 3.266 77.024 70.142 82.143
ROVP .535 159 0.534 .156 .8
POLY* 615 296 0.546 218 1.597
Control variables
Popdensity© 2952.19 673.606 2714.156 1817.403 4567.669
Windspeed_dayd 1.432 256 1.452 1.051 2.24
Windspeed_nightd .989 .25 1.043 477 1.713
Drought index® 8.367 1.764 8 5 14

Data sources.

*The MODIS LST product to measure the UHI effect: https://lpdaac.usgs.gov/products/myd| 1a2v061/.

®Land-use dataset to generate landscape metrics: https:/land.copernicus.eu/pan-european/corine-land-cover.
“Municipality population to quantify polycentricity index (POLY): INKAR (https://www.inkar.de/).

9ERAS5 monthly averaged data for day- and night-time windspeed in summer (June, July, and August): https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=fo.

°Drought index in summer: Deutscher Wetterdienst, https://opendata.dwd.de/climate_environment/CDC/grids_germany/.


https://lpdaac.usgs.gov/products/myd11a2v061/
https://land.copernicus.eu/pan-european/corine-land-cover
https://www.inkar.de/
https://cds.climate.copernicus.eu/cdsapp
https://cds.climate.copernicus.eu/cdsapp
https://opendata.dwd.de/climate_environment/CDC/grids_germany/
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The influence of landscape metrics on the urban heat island effect

This section investigates the influence of “traditional” landscape metrics on the UHI effect. We
estimate both the effects of urban land use patterns and green space patterns on the UHI effect. The
analysis begins with the naive regression models (Figure 2), followed by multivariate OLS re-
gression models that control for population, weather, and climate variables (Table 3). Figure 2
illustrates the relationship between each landscape metric and the daytime UHI effect, with p-values
denoting the level of statistical significance. Green represents green spaces and red represents urban
land covers. To address skewness and improve interpretability, all variables are log-transformed,
except for PLADJs of urban and greenspace patches, as these follow a normal distribution.

The results suggest a positive and statistically significant association between the PLADJ of
urban patches and the UHI effect, indicating that a higher level of aggregation and contiguity in
urban patches contributes to increased urban heat intensity. Similarly, the relationship between PD
and the UHI effect supports this finding, indicating a mitigation effect by increasing fragmentation
and patchiness in urban landcover. The CONTAG, which measures the level of mixed land use,
exhibits a positive and significant trend, implying that a higher degree of mixed landcover (lower
index value) is associated with a cooler urban environment. As urbanized land becomes more
contiguous and less mixed, UHI increases. Furthermore, a higher proportion of vegetated coverage
(ROV) can reduce urban heat intensity. However, there is no significant relationship between the
UHI effect and the urban shape index (AWMSI) and PLADJ of greenspace patches. According to
Debbage and Shepherd (2015), the lack of significance in the naive models does not necessarily
indicate a definitive absence of association, as the existence of omitted variables may bias the
estimates. Therefore, we present multivariate regressions for both day- and night-time UHI effects in
2012, including population density, windspeed, and drought index as control variables (Table 3).
Robust standard errors are reported to account for heteroskedasticity.
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Figure 2. Scatterplots and fitted lines presenting the relationships between urban heat island (UHI) effects and
landscape metrics.
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Table 3. Regressions investigate the effects of land-use patterns on the day- or night-time urban heat island
(UHI) effects in 2012.

Panel A: The effect of
urban land-use
patterns on the UHI

UHI (In) at day UHI (In) at night

effects Model | Model 2 Model3 Model 4 Model 5 Model 6 Model 7 Model 8
PLAD)_Urban .059k* 3k
(.009) (.031)
PD (In) —.305%** —.672kF%
(.06) (.191)
CONTAG (In) 52| |.604**
(:243) (.646)
AWMSI (In) 238wk 443+
(.079) (-191)
Control variables® Yes Yes
Observations® 48 48 48 48 49 49 49 49
R-squared 517 .52 346 405 314 369 229 222
UHI (In) at day UHI (In) at night

Panel B: The effects of greenspace patterns on
UHI effects Model | Model 2 Model 3 Model 4
PLAD)_Green 023 053k

(.009) (.018)
ROV (In) —. 3| 4wk —.639%rk

(.083) (.208)

Control variables® Yes Yes
Observations® 48 48 49 49
R-squared .381 A48 .238 .307

Robust standard errors are in parentheses; **p < .01, *p < .05, *p < .I.

*Observations removed due to the extremely low UHI (In) values: the regions of Siegen and Erfurt in daytime models, and the
region of Ingolstadt in night-time models.

PAll models include population density, windspeed, drought level as control variables.

As shown in Panel A of Table 3, a unit increase in the degree of aggregation (PLADJ) of urban
patches corresponds to a 5.9% increase in the daytime UHI effect (Model 1). The R-squared value
(0.517) is one of the highest among all other models, suggesting the significant impact of urban
aggregation and contiguity on intensifying urban heat. The coefficient estimated of the PD metric is
consistent with this finding, implying that a percentage increase in the degree of fragmentation (PD)
can lead to a 0.287% decrease in the UHI effect (Model 2). These metrics remain statistically
significant and align with expectations in the night-time UHI models (Models 5 and 6). A per-
centage increase in mixed land-use (CONTAG) contributes to a 0.521% and 1.604% decline in the
day- and night-time urban heat intensity, respectively. After controlling for confounding variables,
the coefficients of urban shape index (AWMSI) display statistical significance, indicating that a
higher level of irregularity in the shape of urban patches exacerbates both day- and night-time urban
heat intensity.

We further present the cooling effects of greenspace in Panel B of Table 3. After incorporating the
control variables, the coefficient of PLADJ for greenspace becomes significant. This indicates that a
fragmented and disaggregated distribution of urban greenspace performs better in reducing urban
heat than an aggregated greenspace arrangement (see Models 1 and 3). Put differently, dispersing
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multiple smaller greenspaces throughout the urban area demonstrates a greater cooling effect
compared to having a single large and more aggregated park.

We conduct a robustness check by applying the same models using variables collected for the
year 2006. The regression results are in the supplementary material. Models in 2006 and
2012 produce similar results, except for the variable PLADJ for greenspace. The absence of
significant coefficients in these models, for both day- and night-time, suggests that we should be
cautious regarding the cooling effect of greenspace arrangement, and further studies are necessary to
gain a more conclusive understanding.

The influence of polycentric development on the urban heat island effect

This section investigates the efficacy of polycentric development in mitigating the UHI effect during
both day and night periods and explores whether this effect varies across regions of different sizes. A
conventional approach for distinguishing between polycentric and monocentric patterns is to
analyze the population and/or employment density gradient from the CBD(s) to the urban periphery.
Considering the significant influence of anthropogenic heat sources on urban heat distribution (Oke,
1982), we hypothesize that the heat gradient may display similar features to the population density
gradient, allowing us to identify variations in heat distribution between polycentric and monocentric
regions.

Panel A of Figure 3 illustrates a comparison of surface temperature gradients during both daytime
(solid line) and nighttime (dotted line) for polycentric and monocentric regions. The city regions are
classified into three equal-sized groups, and further categorized as either polycentric or monocentric
depending on whether their polycentricity index exceeds the mean value or not. We visualize the
fitted surface temperature gradients using local weighted regression, wherein the temperature at
each distance level is regressed against the distance to urban center(s). The dependent variable, AT,
represents the differences in land surface temperature (LST) between the urbanized area at each
distance level and the rural area. The starting point(s) of the temperature gradient, known as urban
center(s) or CBD(s), are determined as the pixel(s) with the highest population density within each
urban core.” Notably, certain polycentric regions, such as Essen/Bochum/Dortmund/Hagen, may
possess multiple urban centers due to their multiple urban cores.

Panel A of Figure 3 displays the significant differences in temperature gradients between large-
sized regions and small- and medium-sized regions, irrespective of day or night. Urban centers in
large polycentric regions have notably lower temperatures, and the temperature gradient changes
more gradually compared to their monocentric counterparts. Moreover, as the distance from the
urban center(s) increases, the temperature gap between monocentric and polycentric regions di-
minishes until 13.2 km, where the temperature of polycentric regions slightly exceeds that of
monocentric ones. Similar patterns are also observed in night-time gradients of large-sized regions.
In contrast, during the daytime, the temperature gradients between polycentric and monocentric
regions in medium-sized are minimal, indicating that polycentric configuration has limited impact
on reducing the UHI effect in the urban core(s) of medium-sized regions. Discernible distinctions
emerge beyond 7.0 km, where the temperature of polycentric regions exceeds that of monocentric
regions. This may reflect the more decentralized human activities within polycentric regions that
contribute to rising temperature. The nighttime temperature gradients generally follow the same
pattern as the daytime gradients in medium-sized regions. For small-sized regions, we conclude that
polycentric development cannot effectively mitigate the UHI effect, as the temperature gradients
between monocentric and polycentric regions overlap significantly.

The analysis of temperature gradients across regions of varying sizes reveals two key findings.
First, polycentric development is more effective in mitigating the UHI effect than monocentric
development, particularly in large-sized regions. Second, this mitigation effect is most pronounced
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Figure 3. Panel A: day- and night-time temperature gradients in large-, medium-, and small-sized regions
estimated by local weighted regression. Panel B: day- and night-time kernel density estimates (KDE) for three
representative region pairs using Gaussian kernel. Red depicts monocentric regions and blue polycentric
regions.

closer to the urban center(s), where the UHI effect is most severe, and gradually diminishes as the
distance from the urban center(s) increases.

To further explore the temperature variations between polycentric and monocentric regions,
Panel B of Figure 3 visualizes the temperature distributions of three selected pairs of regions using
kernel density estimates, with temperature difference as the x-axis and density probability as the
y-axis. To ensure comparability between the two regions within each pair, it is necessary to
maximize their differences in the degree of polycentricity while maintaining the highest similarity in
other attributes influencing urban heat. Accordingly, for each pair, a representative monocentric
region (red) is selected and then is matched with its polycentric counterpart (blue) based on a
Euclidean distance method that maximizes the similarity of population density, urbanized area,
windspeed, and precipitation between the two regions. The three representative pairs are Berlin and
Diisseldorf/Duisburg/Krefeld/Monchengladbach; Hamburg and Koéln/Bonn; and Miinchen and
Darmstadt/Frankfurt/Wiesbaden/Mainz. As depicted in Panel B of Figure 3, the daytime tem-
perature distributions of the three monocentric regions exhibit a left-skewed pattern, with visibly
higher peak values shifted towards the right. This suggests that monocentric regions have a greater
proportion of high-temperature areas and a lower proportion of medium to low temperature areas
compared to their polycentric counterparts. During night-time, the distribution curves become
steeper and more pronounced than during daytime, primarily due to the dense clustering of ur-
banized areas within a narrow temperature range. Although the nighttime curves display a similar
shape between the monocentric and polycentric regions, the monocentric regions demonstrate a
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distinct shift toward higher temperatures. These findings highlight the advantage of polycentric
regions in mitigating urban heat compared to monocentric ones, thus further reinforcing, and
validating the conclusions from the previous section.

The preceding discussion suggests that polycentric development is particularly advantageous in
mitigating the UHI effect for larger regions. To explore this further, we utilized regression analysis
to validate our finding using the 2012 variables presented in Table 4. This analysis includes models
using different definitions of the UHI effect, with Models 14 defining UHI as the temperature
difference between the urban fabric within the extended large core area and rural area, the same
definition as in the previous section. For Models 5-8, we redefine the UHI by substituting the
extended large core area with a smaller area restricted to only the urban core(s). See Figure 1 for a
comparison of urban core and large core area. This substitution allows a more precise representation
of heat intensity in the most densely populated areas, as the urban core(s) specifically delineate the
urban domain of regional central cities.

The utilization of different UHI definitions introduces different regression outcomes. Models 1—
4 demonstrate that the variable representing polycentric development, denoted as POLY, exhibits no
statistically significant impact on the UHI effect in any models. In contrast, for Models 5-8 that
represent the UHI effect of urban core(s), POLY displays statistical significance in both day- and
night-time models (Model 5 and 7), implying that polycentric development is more efficient in
reducing heat intensity within the urban core(s) rather than the extended large core area. Specifically,
a doubling of the degree of polycentricity (a 100% increase) leads to a 10.47% reduction in the UHI
effect during the daytime and a 24.61% decrease at night. Moreover, the interaction term, defined
large-sized regions as benchmark, is statistically significant (Model 6), indicating that polycentric
development is more effective in mitigating the UHI effect in larger regions compared to smaller
ones, similar to the observed pattern illustrated in Figure 3. We employ the same models and
variables collected for 2006 to ensure the robustness of our findings and present the results in the
supplementary material. The variable, POLY and the interaction term capturing large-sized regions

Table 4. Regressions examine the impacts of polycentric development on the day- and night-time UHI effects
in 2012.

UH’( In) = TLargeCore(mean) - TR(mean) UH’( In) = TCore(mean) - TR(mean)
Model | Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Day Day night night Day Day night night
Poly (In) —.065 —.067 —.157 .002 —.1047%* .0452 —.2461* 1109
(.0387)  (.1155) (.1377)  (.3001) (.0426) (.1064) (.1287) (.:2511)
Poly (In)* .1088 —.1627 —.1551 —.599
Medium (.1603) (.508) (.1992) (4251)
Poly (In)*Large —.0188 —.1473 —.1913* —.3439
(-1297) (.:3539) (.1123) (:2962)
Control Yes Yes
variables®
Observations® 48 48 49 49 48 48 49 49
R-squared 5397 .5463 .3698 4398 3597 .388 2815 4875

Robust standard errors are in parentheses; *p < .01, **p < .05, *p < .I.

*All models include population density, windspeed, drought level, PLAD] for urban fabric, and contagion index as control
variables.

®Observations removed due to the extremely low UHI (In) values: The regions of siegen and erfurt in daytime models, and the
region of ingolstadt in nighttime models.
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are both statistically significant in the daytime regressions, thereby confirming the robustness of our
findings.

Conclusion and policy implication

This study examines the effectiveness of urban spatial patterns in alleviating the UHI effect in
German city regions (Grofistadtregionen) in the years of 2006 and 2012 utilizing multivariate
regression and non-parametric methods. The urban spatial patterns are quantified using five
landscape metrics that capture the spatial arrangement of urban footprint and greenspace, as well as
a polycentricity index that measures the distribution of human activities.

The regression analysis of the landscape metrics suggests that a more spatially fragmented urban
footprint, mixed land use, and regular-shape urban patches have the potential to effectively mitigate
the UHI effect. These findings are consistent with the conclusions drawn by Debbage and Shepherd
(2015), who emphasized the adverse impact of contiguous urbanized area on intensifying urban heat
in metropolitan areas across the United States. Similar effects of spatial contiguity have also been
corroborated by Liu et al. (2021) in their studies on urban clusters in China. Furthermore, our
analysis suggests that incorporating more vegetated areas helps reduce urban heat. Importantly,
more dispersed and fragmented patterns of green spaces demonstrate greater effectiveness in re-
ducing the UHI effect compared to more aggregated and contiguous greenspace. In addition, we
provide empirical evidence that polycentric spatial development can effectively ameliorate the UHI
effect across German metropolitan regions. But notably, polycentric configuration is particularly
advantageous in cooling large-sized regions compared to medium- or small-sized ones, and its
effectiveness is mostly pronounced near urban center(s) with the highest population density. These
results support our hypothesis that a polycentric configuration may serve as a more efficient ap-
proach to address the UHI effect for large-sized regions. Such a configuration not only helps reduce
the density of the urban core and facilities disaggregated urban development, but also serves to curb
the excessive expansion of impervious surface.

These conclusions offer important policy insights for land use and greenspace planning within
the German context. Specifically, regional-scale governance, widely recognized as the most ex-
perimental and varied, plays an important role in coordinating federal, state (Ldnder), and municipal
planning (Schmidt et al., 2018) and can incorporate urban heat mitigation as a regional policy
objective. Collaboration between multi-level planning authorities can prevent excessive aggregated,
homogeneous, and contiguous urban development. One feasible spatial strategy to achieve this is to
facilitate consolidated green infrastructure planning and governance (Pauleit et al., 2019), as the
spatially targeted distribution of greenspace can reduce urban development density while offering
an extra cooling effect. According to the Federal Spatial Planning Act (Raumordnungsgesetz),
regional plans include specifications about the spatial structure of settlements and open spaces
(Schmidt et al., 2018; Siedentop et al., 2022). Consequently, regional planning institutions should
coordinate with state and local governments to plan for more greenspaces and, importantly, dis-
tribute multiple smaller greenspaces throughout the urban fabric rather than planning for a single
large park, as “several small” yields greater benefits in reducing urban heat than a “single large.”

Finally, our findings suggest that regional polycentricism is not a one-size-fits-all spatial solution
for all metropolitan regions; rather it is particularly beneficial for larger ones characterized by high-
density urban cores and aggregated urban patterns. The potential climate and environmental ad-
vantages of polycentric development for small- and medium-sized regions remain uncertain. These
regions should be cautious to adopt polycentric development as a regional planning goal and take
into consideration a range of potential impacts of polycentric spatial development, including its
potential to effectuate regional cohesion and economic competitiveness simultaneously (Li et al.,



Li and Schmidt I5

2023). Federal-level planning should acknowledge this and offer differentiated guidelines that
consider the varying sizes and geographical contexts of different regions.
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Notes

1. Urbanized area is defined as pixels classified as class 1: artificial surfaces. Find the detailed nomenclature
guideline at https:/land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/
html.

2. MYD11A2.061 Aqua Land Surface Temperature and Emissivity (LST&E) 8-Day Global 1 km.

3. See the general accuracy statement at: https://modis-land.gsfc.nasa.gov/ValStatus.php?ProductID=
MODI11.

4. The sample code is available at: https://code.earthengine.google.com/63¢c37316806efa353217¢8651429bb2.

5. We define urban greenspace as the class 1.4 of the CLC dataset, which includes all artificial, non-agricultural
vegetated areas, within large urban core area.

6. To calculate the population density, we divide the total population within the large urban core area by the
total area of urban footprint extracted from the CLC dataset.

7. We rely on the LandScan 1 km global population grid dataset to select the pixels with the highest population.
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